版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年陜西省西安市東儀中學數(shù)學高二第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.2.若,則()A.1 B.0C. D.3.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.4.已知是拋物線:的焦點,直線與拋物線相交于,兩點,滿足,記線段的中點到拋物線的準線的距離為,則的最大值為()A. B.C. D.5.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.66.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.167.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.8.已知定義域為R的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)9.設,,,…,,,則()A. B.C. D.10.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.11.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.12.已知拋物線的焦點為,拋物線的焦點為,點在上,且,則直線的斜率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在單位正方體中,點E為AD的中點,過點B,E,的平面截該正方體所得的截面面積為______.14.《九章算術》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________15.已知數(shù)列是等差數(shù)列,,公差,為其前n項和,滿足,則當取得最大值時,______16.設變量x,y滿足約束條件則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求適合條件的橢圓的標準方程.(1)長軸長是短軸長的2倍,且過點;(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為6.18.(12分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k19.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍20.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點的直線與圓交于兩點在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.21.(12分)某學校為了調查本校學生在一周內零食方面的支出情況,抽出了一個容量為的樣本,分成四組,,,,其頻率分布直方圖如圖所示,其中支出金額在元的學生有180人.(1)請求出的值;(2)如果采用分層抽樣的方法從,內共抽取5人,然后從中選取2人參加學校的座談會,求在,內正好各抽取一人的概率為多少.22.(10分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的標準方程求出,利用雙曲線,結合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標準方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關系建立方程求出,,是解決本題的關鍵,考查學生的計算能力,屬于基礎題2、C【解析】由結合二項式定理可得出,利用二項式系數(shù)和公式可求得的值.【詳解】,當且時,,因此,.故選:C.【點睛】關鍵點睛:本題考查二項式系數(shù)和的計算,解題的關鍵是熟悉二項式系數(shù)和公式,考查學生的轉化能力與計算能力,屬于基礎題.3、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.4、C【解析】設,過點,分別作拋物線的準線的垂線,垂足分別為,進而得,再結合余弦定理得,進而根據(jù)基本不等式求解得.【詳解】解:設,過點,分別作拋物線的準線的垂線,垂足分別為,則,因為點為線段中點,所以根據(jù)梯形中位線定理得點到拋物線的準線的距離為,因為,所以在中,由余弦定理得,所以,又因為,所以,當且僅當時等號成立,所以,故.所以的最大值為.故選:C【點睛】本題考查拋物線的定義,直線與拋物線的位置關系,余弦定理,基本不等式,考查運算求解能力,是中檔題.本題解題的關鍵在于根據(jù)題意,設,進而結合拋物線的定于與余弦定理得,,再求最值.5、C【解析】求出原函數(shù)的導函數(shù),得到函數(shù)在處的導數(shù)值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C6、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當時,,使的正整數(shù)n的最大值為,故選:C7、B【解析】設,進而根據(jù)題意,結合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設,所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B8、C【解析】利用偶函數(shù)的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數(shù)f(x)不是偶函數(shù),∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數(shù)的定義和全稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.9、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B10、C【解析】求出直線的斜率,結合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設這條件直線的傾斜角為,則,,因此,.故選:C.11、C【解析】首先表示出拋物線的準線,根據(jù)點在拋物線的準線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質,屬于基礎題.12、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標準方程,求得拋物線的焦點坐標后,再根據(jù)斜率公式求解.【詳解】因為,所以,解得,所以直線的斜率為.故選B.【點睛】本題考查了拋物線的定義的應用,考查了拋物線的簡單性質,涉及了直線的斜率公式;拋物線上的點到焦點的距離等于其到準線的距離;解題過程中注意焦點的位置.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,取的中點,連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進而可得為菱形,連接、,求出、的長,計算可得答案【詳解】根據(jù)題意,取的中點,連接、、、,易得,,則四邊形為平行四邊形,過點,,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:14、【解析】建立空間直角坐標系,利用空間向量可以解決問題.【詳解】設,如下圖所示,建立空間直角坐標系,,,,,,則所以又因為所以故答案為:15、9或10【解析】等差數(shù)列通項公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因為,公差,所以或10時,取得最大值故答案為:9或1016、【解析】根據(jù)線性約束條件畫出可行域,把目標函數(shù)轉化為,然后根據(jù)直線在軸上截距最大時即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當直線過點時,有最大值,且最大值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標準方程即可;(2)待定系數(shù)法去求橢圓的標準方程即可.【小問1詳解】當橢圓焦點在x軸上時,方程可設為,將點代入得,解之得,則所求橢圓方程為當橢圓焦點在y軸上時,方程可設為,將點代入得,解之得,則所求橢圓方程為【小問2詳解】橢圓方程可設為,則,解之得,則橢圓方程為18、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點即知橢圓焦點,結合橢圓短軸長,可求得橢圓標準方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關系式,然后求出弦長以及到直線PQ的距離,進而表示出,由題意得關于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點坐標為,由此可知橢圓焦點也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設,則,所以=,點到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.19、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎題.20、(1);(2)存在,.【解析】(1)設出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標,進而可得圓的方程;(2)由題可設直線的方程為,與圓的方程聯(lián)立,利用韋達定理及可得,即得.【小問1詳解】由已知可設圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點為時,使得軸平分.21、(1);(2).【解析】(1)根據(jù)頻率分布直方圖求出[50,60]的頻率,180除以該頻率即為n的值;(2)將的樣本編號為a、b,將的樣本編號為A、B、C,利用列舉法即可求概率.【小問1詳解】由于支出金額在的頻率為,∴.【小問2詳解】采用分層抽樣抽取的的人數(shù)比應為2:3,∴5人中有2人零食支出位于,記為、;有3人零食支出在,記為A、B、C.從這5人中選取2人有,,,,,,,,,,共10種情況;其中內
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025云南昆明市延安醫(yī)院招聘見習人員16人(第三批)考試重點題庫及答案解析
- 上饒市城控集團2025年度一線工作人員公開招聘考試考場變更考試重點試題及答案解析
- 傳媒編輯部內容創(chuàng)作質量與傳播效果績效考核表
- 健康體檢中心服務質量保證承諾書7篇
- 2025云南昆明醫(yī)科大學科學技術處招聘科研助理崗位工作人員6人考試重點試題及答案解析
- 供應鏈風險管理檢查清單模板全行業(yè)
- 2025貴州鹽業(yè)(集團)安順有限責任公司公開招聘工作人員考試核心題庫及答案解析
- 2025廣東汕尾市海豐縣彭湃紀念醫(yī)院高層次附急需緊缺專業(yè)人才專項招聘35人備考核心試題附答案解析
- 2026福建三明市教育局教育類高層次人才專項公開招聘13人考試重點題庫及答案解析
- 新能源汽車研發(fā)工程師性能評估績效考核表
- 含量測定技術知到智慧樹章節(jié)測試課后答案2024年秋天津生物工程職業(yè)技術學院
- 架空輸電線路設計試題
- 煙草法律法規(guī)零售戶培訓
- 社區(qū)警務工作復習測試附答案
- 《民航法律法規(guī)》課件-7-2 民用航空器不安全事件的處置
- 2024秋期國家開放大學《西方行政學說》一平臺在線形考(任務一至四)試題及答案
- 【統(tǒng)考】山東省濟南市2024屆高三下學期一模英語試題
- 2024秋國家開放大學《交通工程》形考任務1-4答案
- 創(chuàng)新設計前沿智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 2024年廣東江門高新區(qū)(江海區(qū))事業(yè)單位招聘67人歷年(高頻重點提升專題訓練)共500題附帶答案詳解
- 股東合作合同模板
評論
0/150
提交評論