版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省嘉峪關(guān)市2026屆數(shù)學(xué)高二上期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.162.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知等差數(shù)列的前n項和為,公差,若(,),則()A.2023 B.2022C.2021 D.20204.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.995.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.46.已知雙曲線(,)的左,右焦點分別為,.若雙曲線右支上存在點,使得與雙曲線的一條漸近線垂直并相交于點,且,則雙曲線的漸近線方程為()A. B.C. D.7.?dāng)?shù)列1,,,的一個通項公式可以是()A. B.C. D.8.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.9.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.7210.某家庭準(zhǔn)備晚上在餐館吃飯,他們查看了兩個網(wǎng)站關(guān)于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應(yīng)選擇()網(wǎng)站①評價人數(shù)網(wǎng)站①好評率網(wǎng)站②評價人數(shù)網(wǎng)站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁11.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.12.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的離心率是______14.拋物線()上的一點到其焦點F的距離______.15.如圖是用斜二測畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.16.過點作圓的兩條切線,切點為A,B,則直線的一般式方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線過點,O為坐標(biāo)原點(1)求焦點的坐標(biāo)及其準(zhǔn)線方程;(2)拋物線C在點A處的切線記為l,過點A作與切線l垂直的直線,與拋物線C的另一個交點記為B,求的面積18.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標(biāo),若不存在,請說明理由.19.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時,已知是假命題,是真命題,求x的取值范圍.20.(12分)已知橢圓的兩焦點為、,P為橢圓上一點,且(1)求此橢圓的方程;(2)若點P在第二象限,,求的面積21.(12分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標(biāo)準(zhǔn)方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標(biāo)22.(10分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意先求出公比,進而用等比數(shù)列通項公式求得答案.【詳解】由題意,設(shè)公比為q,則,則.故選:B.2、C【解析】先根據(jù)直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C3、C【解析】根據(jù)題意令可得,結(jié)合等差數(shù)列前n項和公式寫出,進而得到關(guān)于的方程,解方程即可.【詳解】因為,令,得,又,,所以,有,解得.故選:C4、D【解析】根據(jù)程序框圖得出的變換規(guī)律后求解【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,可得輸出的T關(guān)于t的變換周期為4,而,故時,輸出的值為,故選:D5、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.6、B【解析】利用漸近線方程和直線解出Q點坐標(biāo),再由得P點坐標(biāo),代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因為與漸近線垂直所以的斜率為,方程為解的Q的坐標(biāo)為設(shè)P點坐標(biāo)為則,因為,所以,得點P坐標(biāo)為,代入得:所以,即所以漸近線方程為故選:B.7、A【解析】根據(jù)各項的分子和分母特征進行求解判斷即可.【詳解】因為,所以該數(shù)列的一個通項公式可以是;對于選項B:,所以本選項不符合要求;對于選項C:,所以本選項不符合要求;對于選項D:,所以本選項不符合要求,故選:A8、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D9、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.10、D【解析】根據(jù)給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D11、C【解析】求出導(dǎo)函數(shù),令解不等式即可得答案.【詳解】解:因為函數(shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.12、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.14、【解析】將點坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點坐標(biāo),進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.15、【解析】根據(jù)直觀圖和平面圖的關(guān)系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.16、【解析】已知圓的圓心,點在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點睛】結(jié)論點睛:過圓外一點引圓的切線,那么以圓心和圓外一點連線段為直徑的圓與已知圓相減,就是切點所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)焦點,準(zhǔn)線方程;(2)12.【解析】(1)將點A坐標(biāo)代入求出,寫出拋物線方程即可作答.(2)由(1)的結(jié)論求出切線l的斜率,進而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長及點O到直線AB距離計算作答.【小問1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點,準(zhǔn)線方程為.【小問2詳解】顯然切線l的斜率存在,設(shè)切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點到直線AB:的距離,則,所以的面積是12.18、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標(biāo)【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設(shè)存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點使得19、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當(dāng)時,有,由題意知,p、q一真一假,當(dāng)p真q假時,,當(dāng)p假q真時,,綜上,x的取值范圍為20、(1);(2).【解析】(1)由題可得,根據(jù)橢圓的定義,求得,進而求得的值,即可求解;(2)由題可得直線方程為,聯(lián)立橢圓方程可得點P,利用三角形的面積公式,即求.【小問1詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,焦距為,由題可得,,所以,可得,即,則,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)點坐標(biāo)為,,,∵,∴所在的直線方程為,則解方程組,可得,∴.21、(1);(2)見解析,定點【解析】(1)先判斷圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2)設(shè)在軸上存在定點,使得為定值,根據(jù)題意,設(shè)直線的方程為,聯(lián)立可得,再運算將韋達定理代入化簡有與k無關(guān)即可.【詳解】(1)由圓方程中的時,的兩根不為相反數(shù),故可設(shè)圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即有又,解得∴橢圓的標(biāo)準(zhǔn)方程為(2)證明:設(shè)在軸上存在定點,使得為定值,由(1)可得,設(shè)直線的方程為,聯(lián)立可得,設(shè),則,,要使為定值,只需,解得∴在軸上存在定點,使得為定值,定點的坐標(biāo)為【點睛】本題主要考查橢圓的幾何性質(zhì)和直線與橢圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.22、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)內(nèi)部員工晉升制度手冊
- 2025年項目進度管理與監(jiān)控指南
- 2025年食品加工安全與質(zhì)量管理指南
- 公共交通運營安全管理責(zé)任制度
- 電子資源使用管理制度
- 2025年企業(yè)信息安全評估與風(fēng)險管理指南
- 超市員工績效考核及晉級制度
- 超市顧客投訴處理制度
- 辦公室員工培訓(xùn)效果總結(jié)制度
- 2026年陜西氫能產(chǎn)業(yè)發(fā)展有限公司(榆林)所屬單位社會公開招聘備考題庫及1套參考答案詳解
- 早教師培訓(xùn)課件-01第一章早教師崗位要求第一節(jié)早教師工作內(nèi)容與就業(yè)趨向
- 村級財務(wù)審計合同模板
- 改善就醫(yī)感受,提升患者體驗工作總結(jié)
- 12-重點幾何模型-手拉手模型-專題訓(xùn)練
- RPA財務(wù)機器人開發(fā)與應(yīng)用 課件 項目二 RPA財務(wù)機器人基礎(chǔ)UiPath認(rèn)知
- 山西版三年級上信息技術(shù)教案
- GB/T 17727-2024船用法蘭非金屬墊片
- TGDGX 0003-2024 高校物業(yè)服務(wù)費用測算及基本人員配置規(guī)范
- PICC置管新技術(shù)及維護新進展
- 七年級上冊道德與法治第1-4單元共4個單元復(fù)習(xí)教學(xué)設(shè)計
- 個人分紅收款收據(jù)
評論
0/150
提交評論