版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆遼寧省瓦房店市八中高二上數(shù)學(xué)期末達標(biāo)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:32.設(shè),直線與直線平行,則()A. B.C. D.3.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點的概率C.在區(qū)間[1,4]上任取一數(shù),求這個數(shù)大于1.5概率D.同時擲兩枚質(zhì)地均勻的骰子,求向上的點數(shù)之和是5的概率4.設(shè)雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.5.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.6.甲,乙、丙、丁、戊共5人隨機地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.7.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離8.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.9.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.10.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.11.在中,,滿足條件的三角形的個數(shù)為()A.0 B.1C.2 D.無數(shù)多12.若函數(shù)有兩個零點,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數(shù)項為_______.14.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy中,設(shè)軍營所在平面區(qū)域為{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點P(,)處出發(fā),只要到達軍營所在區(qū)域即回到軍營,當(dāng)將軍選擇最短路程時,飲馬點A的縱坐標(biāo)為______.最短總路程為______15.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準(zhǔn)時發(fā)車,則他等車時間不超過5分鐘的概率為______16.在平面直角坐標(biāo)系中,雙曲線左、右焦點分別為,,點M是雙曲線右支上一點,,則雙曲線的漸近線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設(shè)數(shù)列的通項,求證是等比數(shù)列,并求的前項和.18.(12分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值19.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.20.(12分)已知是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)數(shù)列通項公式為,求數(shù)列的前n項和.21.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值22.(10分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出橢圓的焦點坐標(biāo),再根據(jù)點在橢圓上,線段的中點在軸上,求得點坐標(biāo),進而計算,從而求解.【詳解】由橢圓方程可得:,設(shè)點坐標(biāo)為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.2、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C3、D【解析】A、B兩項中的基本事件的發(fā)生不是等可能的;C項中基本事件的個數(shù)是無限多個;D項中基本事件的發(fā)生是等可能的,且是有限個.故選D【考點】古典概型的判斷4、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.5、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.6、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A7、A【解析】先計算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.8、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D9、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當(dāng)時,可以為5,6當(dāng)時,可以為4,5,6當(dāng)時,可以為4,5,6當(dāng)時,可以為2,3,4,5,6當(dāng)時,可以為1,2,3,4,5,6當(dāng)時,可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C10、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.11、B【解析】利用正弦定理得到,進而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個.故選:B12、C【解析】函數(shù)有兩個零點等價于方程有兩個根,等價于與圖象有兩個交點,通過導(dǎo)數(shù)分析的單調(diào)性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個零點,方程有兩個根,,分離參數(shù)得,與圖象有兩個交點,令,,令,解得當(dāng)時,,在單調(diào)遞增,當(dāng)時,,在單調(diào)遞減,且在處取得極大值及最大值,可以畫出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點睛】本題主要考查函數(shù)零點的應(yīng)用,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】先求出二項式展開式的通項公式,然后令的次數(shù)為0,求出的值,從而可得展開式中的常數(shù)項【詳解】二項式展開式的通項公式為,令,得,所以展開式中的常數(shù)項為故答案為:1514、①.②.【解析】求出P(,)關(guān)于直線x+2y4=0對稱點P'的坐標(biāo),再求出線段OP'與直線x+2y-4=0的交點A,再利用圓的幾何性質(zhì)可得結(jié)果.【詳解】設(shè)P(,)關(guān)于直線x+2y4=0的對稱點為P'(m,n),則解得因為從點P到軍營總路程最短,所以A為線段OP'與直線x+2y4=0的交點,聯(lián)立得y=(42y),解得y=.所以“將軍飲馬”的最短總路程為=,故答案為,.【點睛】本題主要考查對稱問題以及圓的幾何性質(zhì),屬于中檔題.解析幾何中點對稱問題,主要有以下三種題型:(1)點關(guān)于直線對稱,關(guān)于直線的對稱點,利用,且點在對稱軸上,列方程組求解即可;(2)直線關(guān)于直線對稱,利用已知直線與對稱軸的交點以及直線上特殊點的對稱點(利用(1)求解),兩點式求對稱直線方程;(3)曲線關(guān)于直線對稱,結(jié)合方法(1)利用逆代法求解.15、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.16、【解析】首先根據(jù)已知條件得到,再結(jié)合雙曲線的幾何性質(zhì)求解即可.【詳解】如圖所示:,,所以,即.設(shè),則,.即,,,,所以,漸近線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應(yīng)用求出的值,進一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.18、(1)證明見解析(2)【解析】(1)由已知,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,分別表示出B、D、E、F點的坐標(biāo),然后通過計算向量數(shù)量積來進行證明;(2)由第(1)建立的空間直角坐標(biāo)系,分別表示出對應(yīng)點的坐標(biāo),然后計算平面與平面的法向量,然后通過法向量去計算兩平面所成的銳二面角即可.【小問1詳解】如圖,以為坐標(biāo)原點,以,的方向分別為,軸的正方向建立如圖所示的空間直角坐標(biāo)系,由,,,分別為,,的中點,則,,證明:因為,,所以,所以【小問2詳解】設(shè)平面的法向量為,因為,,所以,令,得設(shè)平面的法向量為,則令,得因為所以平面與平面所成銳二面角的余弦值為19、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1);(2).【解析】(1)設(shè)的公比為,利用基本量運算求出公比,可得數(shù)列的通項公式;(2)利用錯位相減法計算出數(shù)列的前n項和【詳解】(1)設(shè)的公比為,由題意知:,.又,解得,,所以.(2).令,則,因此,又,兩式相減得所以.【點睛】方法點睛:本題考查等比數(shù)列的通項公式,考查數(shù)列的求和,數(shù)列求和的方法總結(jié)如下:
公式法,利用等差數(shù)列和等比數(shù)列的求和公式進行計算即可;
裂項相消法,通過把數(shù)列的通項公式拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求出數(shù)列的和;
錯位相減法,當(dāng)數(shù)列的通項公式由一個等差數(shù)列與一個等比數(shù)列的乘積構(gòu)成時使用此方法;
倒序相加法,如果一個數(shù)列滿足首末兩項等距離的兩項之和相等,可以使用此方法求和21、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個法向量,則,不妨令,可得設(shè)為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為22、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年土石方車輛運輸合同協(xié)議書
- 2025福建三明沙縣區(qū)第一中學(xué)高中編內(nèi)招聘7人備考筆試試題及答案解析
- 2026年文化節(jié)舉辦合同
- 合同管理與審批流程自動化工具
- 文藝復(fù)興巨匠美術(shù)教學(xué)設(shè)計方案
- 2025-2026學(xué)年八年級上學(xué)期語文期末壓軸卷含答案
- 深度解析(2026)《GBT 25906.5-2010信息技術(shù) 通 用多八位編碼字符集 錫伯文、滿文名義字符、顯現(xiàn)字符與合體字 48點陣字型 第5部分:奏折體》
- 2025內(nèi)蒙古呼倫貝爾市阿榮旗教育事業(yè)發(fā)展中心遴選教研員4人考試參考試題及答案解析
- 深度解析(2026)《GBT 25915.2-2021潔凈室及相關(guān)受控環(huán)境 第2部分:潔凈室空氣粒子濃度的監(jiān)測》
- 2026江蘇蘇州健雄職業(yè)技術(shù)學(xué)院博士高層次人才需求35人備考考試試題及答案解析
- 2025浙江金華市義烏市機關(guān)事業(yè)單位編外聘用人員招聘(20250401)備考筆試試題及答案解析
- 2025湖南工程機械行業(yè)市場現(xiàn)狀供需調(diào)研及行業(yè)投資評估規(guī)劃研究報告
- 魯東大學(xué)《馬克思主義基本原理II》2024-2025學(xué)年期末試卷(A卷)
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案集錦
- 幼兒園冬至主題活動課件
- 火鍋店鋪運營方案
- 《JBT 6402-2018 大型低合金鋼鑄件 技術(shù)條件》(2026年)實施指南
- 會計博士面試題庫及答案
- 2025年阿克蘇輔警招聘考試真題附答案詳解(綜合卷)
- 山東省煙臺市招遠市(五四學(xué)制)2024-2025學(xué)年八年級上學(xué)期語文期末考試試卷(含答案)
- 雨課堂學(xué)堂在線學(xué)堂云《愛上國樂(東華理大 )》單元測試考核答案
評論
0/150
提交評論