湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題含解析_第1頁
湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題含解析_第2頁
湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題含解析_第3頁
湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題含解析_第4頁
湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省武岡二中2026屆高二數學第一學期期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列關于函數及其圖象的說法正確的是()A.B.最小正周期為C.函數圖象的對稱中心為點D.函數圖象的對稱軸方程為2.已知是定義在上的奇函數,對任意兩個不相等的正數、都有,記,,,則()A. B.C. D.3.已知平面的一個法向量為,且,則點A到平面的距離為()A. B.C. D.14.已知數列滿足,且,則()A.2 B.3C.5 D.85.()A.-2 B.0C.2 D.36.在一次體檢中,發(fā)現甲、乙兩個單位的職工中體重超過的人員的體重如下(單位:).若規(guī)定超過為顯著超重,從甲、乙兩個單位中體重超過的職工中各抽取1人,則這2人中,恰好有1人顯著超重的概率為()A. B.C. D.7.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.8.過點且與直線平行的直線方程是()A. B.C. D.9.已知空間直角坐標系中的點,,,則點P到直線AB的距離為()A. B.C. D.10.如圖,在四面體中,,,,點為的中點,,則()A. B.C. D.11.復數,且z在復平面內對應的點在第二象限,則實數m的值可以為()A.2 B.C. D.012.已知p、q是兩個命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題二、填空題:本題共4小題,每小題5分,共20分。13.等比數列中,,,則數列的公比為____.14.圓心為直線與直線的交點,且過原點的圓的標準方程是________15.一個四面體有五條棱長均為2,則該四面體的體積最大值為_______16.如圖,在平行六面體中,設,N是的中點,則向量_________.(用表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公比的等比數列和等差數列滿足:,,其中,且是和的等比中項(1)求數列與的通項公式;(2)記數列的前項和為,若當時,等式恒成立,求實數的取值范圍18.(12分)已知函數在時有極值0.(1)求函數的解析式;(2)記,若函數有三個零點,求實數的取值范圍.19.(12分)已知,p:,q:(1)若p是q的充分不必要條件,求實數m的取值范圍;(2)若,“p或q”為真命題,“p且q”為假命題,求實數x的取值范圍20.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個條件中任選一個作為已知條件,然后解答問題在△ABC中,內角A,B,C的對邊分別為a,b,c,已知______________(1)求角A的大??;(2)若a=2,且△ABC的面積為2,求b+c21.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.22.(10分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數列的前n項和為,前n項積為,且______(1)求數列的通項公式;(2)若數列的前n項和為,令,求數列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】化簡,利用正弦型函數的性質,依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數圖象的對稱中心為點,C選項錯誤;令,則,所以函數圖象的對稱軸方程為,D選項正確故選:D2、A【解析】由題,可得是定義在上的偶函數,且在上單調遞減,在上單調遞增,根據函數的單調性,即可判斷出的大小關系.【詳解】設,由題,得,即,所以函數在上單調遞減,因為是定義在R上的奇函數,所以是定義在上的偶函數,因此,,,即.故選:A【點睛】本題主要考查利用函數的單調性判斷大小的問題,其中涉及到構造函數的運用.3、B【解析】直接由點面距離的向量公式就可求出【詳解】∵,∴,又平面的一個法向量為,∴點A到平面的距離為故選:B4、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D5、C【解析】根據定積分公式直接計算即可求得結果【詳解】由故選:C6、B【解析】列舉出所有選取的情況,再找出滿足題意的情況,根據古典概型的概率計算公式即可求解.【詳解】不妨用表示每種抽取情況,其中是指甲單位抽取1人的體重,代表從乙單位抽取人的體重.則所有的可能有16種,如下所示:,,,,,,,,,,,,,,,其中滿足題意的有6種:,,,,,故抽取的這2人中,恰好有1人顯著超重的概率為:.故選:.7、C【解析】根據雙曲線的定義和性質,當弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當軸時,周長最小值為故選:C8、A【解析】由題意設直線方程為,根據點在直線上求參數即可得方程.【詳解】由題設,令直線方程為,所以,可得.所以直線方程為.故選:A.9、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D10、B【解析】利用插點的方法,將歸結到題目中基向量中去,注意中線向量的運用.【詳解】.故選:B.11、B【解析】根據復數的幾何意義求出的范圍,即可得出答案.【詳解】解:當z在復平面內對應的點在第二象限時,則有,可得,結合選項可知,B正確故選:B12、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據等比數列的定義,結合已知條件,代值計算即可求得結果.【詳解】因為是等比數列,設其公比為,又,,故可得,解得.故答案為:.14、【解析】由,求得圓心,再根據圓過原點,求得半徑即可.【詳解】由,可得,即圓心為,又圓過原點,所以圓的半徑,故圓的標準方程為故答案為:【點睛】本題主要考查圓的方程的求法,屬于基礎題.15、1【解析】由已知中一個四面體有五條棱長都等于2,易得該四面體必然有兩個面為等邊三角形,根據棱錐的幾何特征,分析出當這兩個平面垂直時,該四面體的體積最大,將相關幾何量代入棱錐體積公式,即可得到答案【詳解】一個四面體有五條棱長都等于2,如下圖:設除PC外的棱均為2,設P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當P到平面ABC距離h最大時,三棱錐體積最大,故當平面PAB⊥平面ABC時,三棱錐體積最大,此時h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:116、【解析】根據向量的加減法運算法則及數乘運算求解即可.【詳解】由向量的減法及加法運算可得,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據已知條件可得出關于方程,解出的值,可求得的值,即可得出數列與的通項公式;(2)求得,利用錯位相減法可求得,分析可知數列為單調遞增數列,對分奇數和偶數兩種情況討論,結合參變量分離法可得出實數的取值范圍.【詳解】(1)設等差數列的公差為,因為,,,且是和的等比中項,所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因為,①,②②①得因為,即對恒成立,所以當且,,故數列為單調遞增數列,當為偶數時,,所以;當為奇數時,,所以,即.綜上可得18、(1)(2)【解析】(1)求出函數的導函數,由在時有極值0,則,兩式聯(lián)立可求常數a,b的值,從而得解析式;(2)利用導數研究函數的單調性、極值,根據函數圖象的大致形狀可求出參數的取值范圍.【小問1詳解】由可得,因為在時有極值0,所以,即,解得或,當時,,函數在R上單調遞增,不滿足在時有極值,故舍去.所以常數a,b的值分別為.所以.【小問2詳解】由(1)可知,,令,解得,當或時,當時,,的遞增區(qū)間是和,單調遞減區(qū)間為,當有極大值,當有極小值,要使函數有三個零點,則須滿足,解得.19、(1)(2)或【解析】(1)根據命題對應的集合是命題對應的集合的真子集列式解得結果即可得解;(2)“p或q”為真命題,“p且q”為假命題,等價于與一真一假,分兩種情況列式可得結果.【詳解】(1)因為p:對應的集合為,q:對應的集合為,且p是q的充分不必要條件,所以,所以,解得.(2),當時,,因為“p或q”為真命題,“p且q”為假命題,所以與一真一假,當真時,假,所以,此不等式組無解;當真時,假,所以,解得或.綜上所述:實數x的取值范圍是或.【點睛】結論點睛:本題考查由充分不必要條件求參數取值范圍,一般可根據如下規(guī)則轉化:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)是的充分不必要條件,則對應集合是對應集合的真子集;(3)是的充分必要條件,則對應集合與對應集合相等;(4)是的既不充分又不必要條件,對的集合與對應集合互不包含20、(1)(2)【解析】(1)選①:化邊為角化簡求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡運算求解(2)利用面積公式求得,再利用余弦定理可得,計算即可.【小問1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=?1+2sin2,∴sin=?cos∴sin(+A)=1∵A∈∴A=選③∵∴∴∵A∈,∴A=【小問2詳解】∵,∴又∵∴即21、(1)(2)證明見解析(3)【解析】(1)求導,根據導數的幾何意義,令x=1處的切線的斜率等1,結合,即可求得a和b的值;(2)利用(1)的結論,構造函數,求求導數,判斷單調性,求出最小值即可證明;(3)根據條件構造函數,求出其導數,分類討論導數的值的情況,根據單調性,判斷函數的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調遞減,當時,,單調遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調遞增,,適合題意;當時,,此時在時單調遞增,,適合題意;當時,,此時,此時在時單調遞增,,適合題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論