版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
【備考期末】榆林市中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.問題發(fā)現(xiàn):(1)正方形ABCD和正方形AEFG如圖①放置,AB=4,AE=2.5,則=___________.問題探究:(2)如圖②,在矩形ABCD中,AB=3,BC=4,點(diǎn)P在矩形的內(nèi)部,∠BPC=135°,求AP長的最小值.問題拓展:(3)如圖③,在四邊形ABCD中,連接對角線AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,則對角線BD是否存在最大值?若存在,求出最大值;若不存在,請說明理由.2.(問題發(fā)現(xiàn))(1)如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(探究證明)(2)如圖2,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一直線時(shí),BD與CE具有怎樣的位置關(guān)系,并說明理由;(拓展延伸)(3)如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,將△ACD繞順時(shí)針旋轉(zhuǎn),點(diǎn)C對應(yīng)點(diǎn)E,設(shè)旋轉(zhuǎn)角∠CAE為α(0°<α<360°),當(dāng)點(diǎn)C,D,E在同一直線時(shí),畫出圖形,并求出線段BE的長度.3.在中,,點(diǎn)D?E分別是的中點(diǎn),將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)一定的角度,連接.觀察猜想(1)如圖①,當(dāng)時(shí),填空:①______________;②直線所夾銳角為____________;類比探究(2)如圖②,當(dāng)時(shí),試判斷的值及直線所夾銳角的度數(shù),并說明理由;拓展應(yīng)用(3)在(2)的條件下,若,將繞著點(diǎn)C在平面內(nèi)旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線AC上時(shí),請直接寫出的值.4.已知:如圖1所示將一塊等腰三角板BMN放置與正方形ABCD的重合,連接AN、CM,E是AN的中點(diǎn),連接BE.(觀察猜想)(1)CM與BE的數(shù)量關(guān)系是________;CM與BE的位置關(guān)系是________;(探究證明)(2)如圖2所示,把三角板BMN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),其他條件不變,線段CM與BE的關(guān)系是否仍然成立,并說明理由;(拓展延伸)(3)若旋轉(zhuǎn)角,且,求的值.5.(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.6.某數(shù)學(xué)課外活動小組在學(xué)習(xí)了勾股定理之后,針對圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積之間的關(guān)系問題”進(jìn)行了以下探究:類比探究:(1)如圖2,在中,為斜邊,分別以為直徑,向外側(cè)作半圓,則面積之間的關(guān)系式為_____________;推廣驗(yàn)證:(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作,,滿足,則(1)中所得關(guān)系式是否仍然成立?若成立,請證明你的結(jié)論;若不成立,請說明理由;拓展應(yīng)用:(3)如圖4,在五邊形中,,點(diǎn)在上,,求五邊形的面積.7.(模型構(gòu)建)如圖所示,在邊長為1的正方形中,的頂點(diǎn),分別在,上(可與點(diǎn),,重合),且滿足.的高線交線段于點(diǎn)(可與,重合),設(shè).(1)求的值.(模型拓展)在(模型構(gòu)建)的基礎(chǔ)上,將條件“邊長為1的正方形”改為“長、寬的矩形”(其他條件不變).(2)判斷的值是否改變.若改變,請求出的取值范圍;若不改變,請證明.(深入探究)在(模型構(gòu)建)的基礎(chǔ)上,設(shè)的面積為.(3)①求的最小值;②當(dāng)取到最小值時(shí),直接寫出與的數(shù)量關(guān)系.8.(閱讀理解)定義:如果四邊形的某條對角線平分一組對角,那么把這條對角線叫“協(xié)和線”,該四邊形叫做“協(xié)和四邊形”.(深入探究)(1)如圖1,在四邊形中,,,請說明:四邊形是“協(xié)和四邊形”.(嘗試應(yīng)用)(2)如圖2,四邊形是“協(xié)和四邊形”,為“協(xié)和線”,,,若點(diǎn)、分別為邊、的中點(diǎn),連接,,.求:①與的面積的比;②的正弦值.(拓展應(yīng)用)(3)如圖3,在菱形中,,,點(diǎn)、分別在邊和上,點(diǎn)、分別在邊和上,點(diǎn)為與的交點(diǎn),點(diǎn)在上,連接,若四邊形,都是“協(xié)和四邊形”,“協(xié)和線”分別是、,求的最小值.9.如圖1,在中,,點(diǎn)P在斜邊上,點(diǎn)D?E?F分別是線段??的中點(diǎn),易知是直角三角形.現(xiàn)把以點(diǎn)P為中心,順時(shí)針旋轉(zhuǎn),其中.連接??.(1)操作發(fā)現(xiàn)如圖2,若點(diǎn)P是的中點(diǎn),連接,可以發(fā)現(xiàn)____________;(2)類比探究如圖3,中,于點(diǎn)P,請判斷與的大小,結(jié)合圖2說明理由;(3)拓展提高在(2)的條件下,如果,且,在旋轉(zhuǎn)的過程中,當(dāng)以點(diǎn)C?D?F?P四點(diǎn)為頂點(diǎn)的四邊形與以點(diǎn)B?E?F?P四點(diǎn)為頂點(diǎn)的四邊形都是平行四邊形時(shí),直接寫出線段??的長.10.如圖,在中,,,,為底邊上一動點(diǎn),連接,以為斜邊向左上方作等腰直角,連接.觀察猜想:(1)當(dāng)點(diǎn)落在線段上時(shí),直接寫出,的數(shù)量關(guān)系:_______.類比探究:(2)如圖2,當(dāng)點(diǎn)在線段上運(yùn)動時(shí),請問(1)中結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由;拓展延伸:(3)在點(diǎn)運(yùn)動過程中,當(dāng)時(shí),請直接寫出線段的長.11.綜合與實(shí)踐——探究特殊三角形中的相關(guān)問題問題情境:某校學(xué)習(xí)小組在探究學(xué)習(xí)過程中,將兩塊完全相同的且含角的直角三角板和按如圖1所示位置放置,且的較短直角邊為2,現(xiàn)將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),如圖2,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn).(1)初步探究:勤思小組的同學(xué)提出:當(dāng)旋轉(zhuǎn)角時(shí),是等腰三角形;(2)深入探究:敏學(xué)小組的同學(xué)提出在旋轉(zhuǎn)過程中,如果連接,,那么所在的直線是線段的垂直平分線.請幫他們證明;(3)再探究:在旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)角時(shí),求與重疊的面積;(4)拓展延伸:在旋轉(zhuǎn)過程中,是否能成為直角三角形?若能,直接寫出旋轉(zhuǎn)角的度數(shù);若不能,說明理由.12.(問題情境)在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點(diǎn)P為直線BC上一動點(diǎn)(不與點(diǎn)B、C重合),連接AP,將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線段PQ旋轉(zhuǎn)角為α,連接CQ.(特例分析)(1)當(dāng)α=90°,點(diǎn)P在線段BC上時(shí),過P作PF∥AC交直線AB于點(diǎn)F,如圖①,易得圖中與△APF全等的一個(gè)三角形是,∠ACQ=°.(拓展探究)(2)當(dāng)點(diǎn)P在BC延長線上,AB:AC=m:n時(shí),如圖②,試求線段BP與CQ的比值;(問題解決)(3)當(dāng)點(diǎn)P在直線BC上,α=60°,∠APB=30°,CP=4時(shí),請直接寫出線段CQ的長.13.(探究證明)(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請你給出證明:如圖①,在矩形ABCD中,EF⊥GH,EF分別交AD、BC于點(diǎn)E、F,GH分別交AB、DC于點(diǎn)G、H,求證:;(結(jié)論應(yīng)用)(2)如圖②,將矩形ABCD沿EF折疊,使得點(diǎn)B和點(diǎn)D重合,若AB=2,BC=3.求折痕EF的長;(拓展運(yùn)用)(3)如圖③,將矩形ABCD沿EF折疊.使得點(diǎn)D落在AB邊上的點(diǎn)G處,點(diǎn)C落在點(diǎn)P處,得到四邊形EFPG,若AB=2,BC=3,EF=,請求BP的長.14.幾何探究:(問題發(fā)現(xiàn))(1)如圖1所示,△ABC和△ADE是有公共頂點(diǎn)的等邊三角形,BD、CE的關(guān)系是_______(選填“相等”或“不相等”);(請直接寫出答案)(類比探究)(2)如圖2所示,△ABC和△ADE是有公共頂點(diǎn)的含有角的直角三角形,(1)中的結(jié)論還成立嗎?請說明理由;(拓展延伸)(3)如圖3所示,△ADE和△ABC是有公共頂點(diǎn)且相似比為1:2的兩個(gè)等腰直角三角形,將△ADE繞點(diǎn)A自由旋轉(zhuǎn),若,當(dāng)B、D、E三點(diǎn)共線時(shí),直接寫出BD的長.15.如圖(1),已知點(diǎn)在正方形的對角線上,垂足為點(diǎn),垂足為點(diǎn).(1)證明與推斷:求證:四邊形是正方形;推斷:的值為__;(2)探究與證明:將正方形繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)角,如圖(2)所示,試探究線段與之間的數(shù)量關(guān)系,并說明理由;(3)拓展與運(yùn)用:若,正方形在繞點(diǎn)旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在一條直線上時(shí),則.16.如圖1,已知,,點(diǎn)D在上,連接并延長交于點(diǎn)F,(1)猜想:線段與的數(shù)量關(guān)系為_____;(2)探究:若將圖1的繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn),當(dāng)小于時(shí),得到圖2,連接并延長交于點(diǎn)F,則(1)中的結(jié)論是否還成立?若成立,請證明;若不成立,請說明理由;(3)拓展:圖1中,過點(diǎn)E作,垂足為點(diǎn)G.當(dāng)?shù)拇笮“l(fā)生變化,其它條件不變時(shí),若,,直接寫出的長.17.綜合與實(shí)踐:問題情境:在數(shù)學(xué)課上,以“等腰直角三角形為主體,以點(diǎn)的對稱為基礎(chǔ),探究線段間的變化關(guān)系”.如圖1,在中,,,點(diǎn)為的角平分線上一動點(diǎn)但不與點(diǎn)重合,作點(diǎn)關(guān)于直線的對稱點(diǎn)為,連接并延長交延長線于點(diǎn),連接并延長交直線于點(diǎn).探究實(shí)踐:(1)勤奮小組的同學(xué)發(fā)現(xiàn),請寫出證明;探究發(fā)現(xiàn):(2)智慧小組在勤奮小組的基礎(chǔ)上繼續(xù)探究,發(fā)現(xiàn)線段,與存在數(shù)量關(guān)系,請寫出他們的發(fā)現(xiàn)并證明;探究拓展:(3)如圖2,奇異小組的同學(xué)在前兩個(gè)小組探究的基礎(chǔ)上,連接,得到三條線段,與存在一定的數(shù)量關(guān)系,請直接寫出.18.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點(diǎn)E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點(diǎn)E在邊CD上,點(diǎn)F在邊AD的延長線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點(diǎn)H.求證:BH=GH.(拓展)(3)如圖③,點(diǎn)E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點(diǎn)F,若∠EFA=∠AEB,延長FE交BC于點(diǎn)G.求證:BG=CG.19.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.20.綜合與實(shí)踐操作探究(1)如圖1,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn).請回答下列問題:①與全等的三角形為______,與相似的三角形為______.并證明你的結(jié)論:(相似比不為1,只填一個(gè)即可):②若連接、,請判斷四邊形的形狀:______.并證明你的結(jié)論;拓展延伸(2)如圖2,矩形中,,,點(diǎn)、分別在、邊上,且,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn),連接.①設(shè),,則與的數(shù)量關(guān)系為______;②設(shè),,請用含的式子表示:______;③的最小值為______.【參考答案】***試卷處理標(biāo)記,請不要刪除一、中考幾何壓軸題1.(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以解析:(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則P的運(yùn)動軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,根據(jù)給出數(shù)據(jù)求值即可;(3)以AB為斜邊向下做等腰直角三角形AEB,連接CE,根據(jù)△DAB∽△CAE,得出BD=CE,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,根據(jù)C點(diǎn)的軌跡求出CE最大值,即求出BD最大值.【詳解】解:(1)如圖①,連接AC、AF、DG、CF,在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,∴,又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,∴∠DAG=∠CAF,∴△DGA∽△CFA,∴,故答案為;(2)如圖②,以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則∠BPC作為圓周角剛好是135°,∴P的運(yùn)動軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,作OE垂直AB延長線于點(diǎn)E,∵△BOC為等腰直角三角形,BC=4,∴OB=OC=BC=×4=2,∠OBC=45°,∴∠OBE=90°-∠OBC=90°-45°=45°,又∵OE⊥AE,∴△BEO為等腰直角三角形,∴BE=OE=OB=×2=2,又∵AB=3,∴AE=AB+BE=3+2=5,∴,∵OP=OB=2,∴AP=AO-OP=-2,即AP的最小值為-2;(3)存在,如圖3,以AB為斜邊向下做等腰直角三角形AEB,連接CE,則∠EAB=45°,,∵AC=AD,∠ACD=90°,∴DAC=45°,,∴,∠DAB=∠CAE=45°,∴△DAB∽△CAE,∴,∴BD=CE,∴當(dāng)CE最大時(shí),BD取最大值,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,∵∠AOB=90°,∠ACB=45°,∴點(diǎn)C在優(yōu)弧AB上,由圖知當(dāng)C在OE延長線C'位置時(shí)C'E有最大值,此時(shí)C'E=OE+OC',∵AB=6,△AOB和△AEB都是以AB為斜邊的等腰直角三角形,∴四邊形AOBE為正方形,∴OE=AB=6,OC'=OA=AB=3,∴CE的最大值為6+3,∵BD=CE,∴BD的最大值為×(6+3)=6+6.【點(diǎn)睛】本題主要考查了圖形的變換,三角形相似,等腰直角三角形,正方形,圓周角,圓心角等知識點(diǎn),熟練掌握并靈活運(yùn)用這些知識點(diǎn)是解題的關(guān)鍵.2.(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三解析:(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三角形全等的性質(zhì)可求解;(2)連接BD,由題意易得∠BAD=∠CAE,進(jìn)而可證△BAD≌△CAE,最后根據(jù)三角形全等的性質(zhì)及角的等量關(guān)系可求證;(3)如圖,過A作AF⊥EC,由題意可知Rt△ABC∽Rt△AED,∠BAC=∠EAD=90°,然后根據(jù)相似三角形的性質(zhì)及題意易證△BAE∽△CAD,最后根據(jù)勾股定理及等積法進(jìn)行求解即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案為:BD=CE,BD⊥CE;(2)BD⊥CE,理由:如圖2,連接BD,∵在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∵AC=AB,AE=AD,∴△CEA≌△BDA(SAS),∴∠BDA=∠AEC=45°,∴∠BDE=∠ADB+∠ADE=90°,∴BD⊥CE;(3)如圖3,過A作AF⊥EC,由題意可知Rt△ABC∽Rt△AED,∠BAC=∠EAD=90°,∴,即,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠ABE=∠ACD,∵∠BEC=180°﹣(∠CBE+∠BCE)=180°﹣(∠CBA+∠ABE+∠BCE)=180°﹣(∠CBA+∠ACD+∠BCE)=90°,∴BE⊥CE,在Rt△BCD中,BC=2CD=4,∴BD=,∵AC⊥BD,∴S△BCD=AC?BD=BC?AC,∴AC=AE=,AD=,∴AF=,CE=2CF=2×,∴BE=.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定及相似三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)題意得到三角形的全等,然后利用全等三角形的性質(zhì)得到相似三角形,進(jìn)而求解.3.(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD解析:(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD于T.證明,推出,可得結(jié)論.(3)分兩種情形:①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時(shí),分別利用勾股定理求解即可.【詳解】解:(1)如圖①中,延長BD交AE的延長線于T,BT交AC于O.,是等邊三角形,,,,,,,,,∴直線所夾銳角為,故答案為1,.(2)如圖②中,設(shè)AC交于O,AE交于T.,是等腰直角三角形,,,,,,,,,∴直線所夾銳角為.(3)①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.由題意,,,,,在中,②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時(shí),同法可得,綜上所述,滿足條件的的值為.【點(diǎn)睛】本題考查幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.4.(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是A解析:(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是AN的中點(diǎn),即可證明CM=2BE,根據(jù)等邊對等角得到∠ABE=∠BCM,∠ABE+∠BMC=90°即可證明CM⊥BE.(2)【探究證明】延長BE至F使EF=BE,連接AF,先證明△AEF≌△NEB,再證明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,進(jìn)而求得∠BCM+∠EBC=90°,即可證明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,過C作CG⊥MB于G,設(shè)CG為m,則BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【詳解】解:【觀察猜想】(1)CM=2BE;CM⊥BE;如圖1所示圖1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中點(diǎn),∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90°∴∠BPM=90°∴CM⊥BE.【探究證明】(2)CM=2BE,CM⊥BE仍然成立.如圖2所示,延長BE至F使EF=BE,連接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如圖3所示,過C作CG⊥MB于G,圖3設(shè)CG為m則BC=m,MG=m,所以MB=BN=m-m,∴.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì),直角三角形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用以上性質(zhì)解決問題.5.(1)見解析;(2);見解析;(3)【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GM解析:(1)見解析;(2);見解析;(3)【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【點(diǎn)睛】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,是解題的關(guān)鍵.6.(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)解析:(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)先添加輔助線,在第二問的思路下,先證明三個(gè)三角形相似,得出三個(gè)三角形的面積關(guān)系,再利用30°、45°的直角三角形計(jì)算出相應(yīng)的邊,計(jì)算出五邊形的面積即可.【詳解】解:(1)設(shè)AB=b,AC=a,BC=c.則有:所以在Rt△ABC中,有a2+b2=c2,且故答案為:S1+S2=S3(2)∵∴設(shè)AB、AC、BC邊上的高分別為h1,h2,h3∴,設(shè)AB=b,AC=a,BC=c則∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)連接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,則AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=則PD=1+∴=所以五邊形的面積為:【點(diǎn)睛】本題考查勾股定理、與勾股定理有關(guān)的圖形問題、相似三角形.是中考的常考知識.7.(1)=1;(2)改變,;(3)①=;②GB=()DG.【分析】(1)利用三點(diǎn)共線,可以求出k=1;(2)當(dāng)點(diǎn)G與點(diǎn)E重合時(shí),DG取最小值,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),DG取最大值,進(jìn)而求出k的取解析:(1)=1;(2)改變,;(3)①=;②GB=()DG.【分析】(1)利用三點(diǎn)共線,可以求出k=1;(2)當(dāng)點(diǎn)G與點(diǎn)E重合時(shí),DG取最小值,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),DG取最大值,進(jìn)而求出k的取值范圍;(3)①設(shè)BE=m,BF=n,利用一元二次方程的根與系數(shù)的關(guān)系進(jìn)行和不等式進(jìn)行求解;②根據(jù)①求出的EF=,由于ΔDEF為等腰三角形,EF為底,所以G為EF中點(diǎn),易得GB=,進(jìn)而可以求出GB=()DG.【詳解】如圖1所示,把ΔDAE,ΔDCF分別沿著DE、DF翻折,在正方形ABCD中,ADC=DAB=DCB=90°’,AD=CD,ADE+CDF=ADC-EDF=90°-45°=45°,翻折后,AD,CD重合.設(shè)重合線為AG',則DG'E=DG'F=90°,DG'EF,且E、G'、F三點(diǎn)共線,則G'在EF上。又DGEF,DG'與DG重合,DG=DG'=AD.k==1.(2)k的值發(fā)生改變.①如圖2所示,當(dāng)點(diǎn)G與點(diǎn)E重合時(shí),DG取最小值,DEF=90°又EDF=45°,ΔDEF是等腰直角三角形,則DE=EF.易證ΔADEΔBEF,AD=BE=6,AE=AB-BE=8-6=2,在RtΔADE中,由勾股定理,得DE=,②如圖3所示,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),DG取最大值,EDC=45°,AB//DF,則AED=EDC=45°,ΔDAE是等腰直角三角形,則AD=AE=6,BE=AB-AE=8-6=2,在RtΔEBC中,由勾股定理得:CE=,易證ΔDGC~ΔCBE,,即DG=,,綜上所述,.(3)①設(shè)BE=m,BF=n,易知ΔBEF的周長為2.,一元二次方程有求根公式:,,所以,,則m,n是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根,,解得:.S=DG·EF=EF,當(dāng)EF=時(shí),S取最小值.②ΔDEF為等腰三角形,EF為底,G為EF中點(diǎn),易得GB=EF=,GB=()DG.【點(diǎn)睛】本題考查了正方形、矩形、等腰三角形的性質(zhì)及一元二次方程的靈活運(yùn)用,有一定的難度,解題關(guān)鍵是畫出正確的圖形進(jìn)行解答.8.(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的解析:(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的判定定理可得,從而可得,再根據(jù)等邊三角形的判定與性質(zhì)可得,然后設(shè),解直角三角形可得,從而可得,最后利用三角形的面積公式即可得;②如圖(見解析),設(shè),先利用勾股定理可得,再利用三角形的面積公式可得,然后根據(jù)正弦三角函數(shù)的定義即可得;(3)如圖(見解析),先解直角三角形可得,再根據(jù)菱形的性質(zhì)、平行線的性質(zhì)可得,從而可得,然后根據(jù)垂線段最短可得當(dāng)時(shí),取得最小值,最后根據(jù)相似三角形的判定與性質(zhì)即可得.【詳解】證明:(1)如圖,連接,在和中,,,,平分和,四邊形是“協(xié)和四邊形”;(2)①如圖,設(shè)與相交于點(diǎn),為“協(xié)和線”,平分和,,在和中,,,,∵點(diǎn)、分別為邊、的中點(diǎn),,,是等邊三角形,,(等腰三角形的三線合一),設(shè),則,∵在中,,,在中,,,,即與的面積的比為;②如圖,過點(diǎn)作于點(diǎn),由(2)①知,垂直平分,,設(shè),則,同(2)①可得:,,,,解得,則在中,;(3)如圖,過點(diǎn)作,交延長線于點(diǎn),,,在中,,四邊形是菱形,,,同(2)①可證:垂直平分,,,,由垂線段最短可知,當(dāng)時(shí),取得最小值,在和中,,,,即,解得,即的最小值為.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)、解直角三角形、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等知識點(diǎn),較難的是題(3),利用垂線段最短得出當(dāng)時(shí),取得最小值是解題關(guān)鍵.9.(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.解析:(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.(3)分兩種情形:如圖中,當(dāng)時(shí),滿足條件,如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,分別求解即可.【詳解】解:(1)如圖2中,連接,.,,,,,,,,,,,同法可證,,,.故答案為1,1.(2)結(jié)論:.理由:如圖3中,連接.,,,,,,,,,同法可證,,,,,,,.(3)如圖中,當(dāng)時(shí),,,,,,四邊形是平行四邊形,,,,,,同法可證,,四邊形是平行四邊形,,,,,,,,,,,,,,由(2)可知,,,.如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,此時(shí),由(2)可知,,,.綜上所述,,,.【點(diǎn)睛】本題屬于四邊形綜合題,考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考壓軸題.10.(1)=;(2)成立,證明見解析;(3)或【分析】(1)證明是等腰直角三角形即可.(2)結(jié)論成立.取的中點(diǎn),連接,.證明,推出,再證明,可得結(jié)論.(3)分兩種情形:如圖中,取的中點(diǎn),連接.當(dāng)解析:(1)=;(2)成立,證明見解析;(3)或【分析】(1)證明是等腰直角三角形即可.(2)結(jié)論成立.取的中點(diǎn),連接,.證明,推出,再證明,可得結(jié)論.(3)分兩種情形:如圖中,取的中點(diǎn),連接.當(dāng)點(diǎn)在線段上時(shí),如圖中,當(dāng)點(diǎn)在線段上時(shí),分別利用勾股定理求解即可.【詳解】解:(1)如圖(1)中,,都是等腰直角三角形,,,,,故答案為:.(2)如圖(2)中,結(jié)論成立.理由:取的中點(diǎn),連接,.,,,,,,,都是等腰直角三角形,,,,,,,,,,,,,.(3)如圖中,取的中點(diǎn),連接.當(dāng)點(diǎn)在線段上時(shí),,,,,,在中,,.如圖中,當(dāng)點(diǎn)在線段上時(shí),同法可得,,,綜上所述,的長為或.【點(diǎn)睛】本題屬于三角形綜合題,考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考壓軸題.11.(1)15o或60o;(2)見解析;(3);(4)能,30o或60o【分析】(1)分三種情況討論:當(dāng)時(shí),當(dāng)當(dāng)利用三角形的內(nèi)角和定理與旋轉(zhuǎn)的旋轉(zhuǎn)從而可得答案;(2)先證明,得到證明,再證明,解析:(1)15o或60o;(2)見解析;(3);(4)能,30o或60o【分析】(1)分三種情況討論:當(dāng)時(shí),當(dāng)當(dāng)利用三角形的內(nèi)角和定理與旋轉(zhuǎn)的旋轉(zhuǎn)從而可得答案;(2)先證明,得到證明,再證明,得到結(jié)合從而可得結(jié)論;(3)先求解的面積,再證明,結(jié)合,從而可得重疊部分的面積;(4)當(dāng)∠CNP=90°時(shí),依據(jù)對頂角相等可求得∠ANF=90°,然后依據(jù)∠F=60°可求得∠FAN的度數(shù),由旋轉(zhuǎn)的定義可求得∠α的度數(shù);當(dāng)∠CPN=90°時(shí).由∠C=30°,∠CPN=90°,可求得∠CNP的度數(shù),然后依據(jù)對頂角相等可得到∠ANF的度數(shù),然后由∠F=60°,依據(jù)三角形的內(nèi)角和定理可求得∠FAN的度數(shù),于是可得到∠α的度數(shù).【詳解】解:(1)當(dāng)時(shí),當(dāng)>綜上:當(dāng)或,是等腰三角形;故答案為:或.(2)由題可知,,,,.由旋轉(zhuǎn)可知,∴,∴.,∴.又∵,,∴.∴,∴點(diǎn)在的垂直平分線上.∵,∴點(diǎn)在的垂直平分線上,∴所在的直線是的垂直平分線.(3)如答圖,∵,,∴,∴是直角三角形,∵,∴,,∴.∵,,∴.∵.∴,∵由(2)可知.∴.∵.∴.(4)如圖所示:當(dāng)∠CNP=90°時(shí).∵∠CNP=90°,∴∠ANF=90°.又∵∠AFN=60°,∴∠FAN=180°-60°-90°=30°.∴∠α=30°.如圖所示:當(dāng)∠CPN=90°時(shí).∵∠C=30°,∠CPN=90°,∴∠CNP=60°.∴∠ANF=60°.又∵∠F=60°,∴∠FAN=60°.∴∠α=60°.綜上所述,∠α=30°或60°.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)的性質(zhì),等腰三角形的判定,直角三角形的性質(zhì),三角形的內(nèi)角和定理,三角形的全等的判定與性質(zhì),線段的垂直平分線的判定,解直角三角形,重疊部分的面積的計(jì)算,掌握以上知識是解題的關(guān)鍵.12.(1)△PQC,90;(2);(3)線段CQ的長為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF解析:(1)△PQC,90;(2);(3)線段CQ的長為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF=∠QPC,從而可得結(jié)論,(2)過P作PF∥AC,交BA的延長線于F,則,再證明△AFP≌△PCQ,利用△ABC∽△FBP的性質(zhì)可得答案,(3)分情況討論:當(dāng)P在CB的延長線上時(shí),證明△APC≌△QPC,利用等邊三角形的性質(zhì)可得答案,當(dāng)P在BC的延長線上時(shí),連接AQ,利用等邊三角形的性質(zhì),證明△ACQ≌△PCQ,從而可得答案.【詳解】解:(1)如圖①,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵PF∥AC,∴∠BPF=∠BFP=45°,∴△BPF是等腰直角三角形,∴BF=BP,∴AF=CP,由旋轉(zhuǎn)可得,AP=PQ,∠APQ=90°,而∠BPF=45°,∴∠QPC=45°﹣∠APF,又∵∠PAF=∠PFB﹣∠APF=45°﹣∠APF,∴∠PAF=∠QPC,∴△APF≌△PQC,∴∠PCQ=∠AFP=135°,又∵∠ACB=45°,∴∠ACQ=90°,故答案為:△PQC,90;(2)如圖②,過P作PF∥AC,交BA的延長線于F,則,又∵AB=BC,∴AF=CP,又∵∠FAP=∠ABC+∠APB=α+∠APB,∠CPQ=∠APQ+∠APB=α+∠APB,∴∠FAP=∠CPQ,由旋轉(zhuǎn)可得,PA=PQ,∴△AFP≌△PCQ,∴FP=CQ,∵PF∥AC,∴△ABC∽△FBP,∴,∴(3)如圖,當(dāng)P在CB的延長線上時(shí),∠CPQ=∠APQ﹣∠APB=60°﹣30°=30°,∴∠APC=∠QPC,又∵AP=QP,PC=PC,∴△APC≌△QPC,∴CQ=AC,又∵BA=BC,∠ABC=60°,∴△ABC是等邊三角形,∴∠ABC=60°,∠BAP=∠ABC﹣∠APB=30°,∴BP=AB=BC=PC=2,∴QC=AC=BC=2;如圖,當(dāng)P在BC的延長線上時(shí),連接AQ,由旋轉(zhuǎn)可得,AP=QP,∠APQ=∠ABC=60°,∴△APQ是等邊三角形,∴AQ=PQ,∠APQ=60°=∠AQP,又∵∠APB=30°,∠ACB=60°,∴∠CAP=30°,∠CPQ=90°,∴∠CAP=∠APA,∴AC=PC,∴△ACQ≌△PCQ,∴∠AQC=∠PQC=∠AQP=30°,∴Rt△PCQ中,CQ=2CP=8.綜上所述,線段CQ的長為2或8.【點(diǎn)睛】本題屬于相似形綜合題,主要考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形或相似三角形,利用全等三角形的對應(yīng)邊相等,相似三角形的對應(yīng)邊成比例進(jìn)行推算.13.(1)見解析;(2)EF=;(3)BP=.【分析】(1)過點(diǎn)A作AP∥EF,交BC于P,過點(diǎn)B作BQ∥GH,交CD于Q,如圖1,易證AP=EF,GH=BQ,△ABP∽△BCQ,然后運(yùn)用相似三角形解析:(1)見解析;(2)EF=;(3)BP=.【分析】(1)過點(diǎn)A作AP∥EF,交BC于P,過點(diǎn)B作BQ∥GH,交CD于Q,如圖1,易證AP=EF,GH=BQ,△ABP∽△BCQ,然后運(yùn)用相似三角形的性質(zhì)就可解決問題;(2)連接BD,根據(jù)矩形的性質(zhì)得出BD的長,再根據(jù)結(jié)論(1)得出,進(jìn)而可求出EF的長.(3)過點(diǎn)F作FH⊥EG于H,過點(diǎn)P作PJ⊥BF于J.根據(jù)矩形的性質(zhì)得到AD、CD的長,由結(jié)論(1)可得出DG的長,再由勾股定理得出AG的長,然后根據(jù)翻折的性質(zhì)結(jié)合勾股定理得出四邊形HGPF是矩形,進(jìn)而得出FH的長度,最后根據(jù)相似三角形得出BJ、PJ的長度就可以得出BP的長度.【詳解】(1)如圖①,過點(diǎn)A作AP∥EF,交BC于P,過點(diǎn)B作BQ∥GH,交CD于Q,BQ交AP于T.∵四邊形ABCD是矩形,∴AB∥DC,AD∥BC.∴四邊形AEFP、四邊形BGHQ都是平行四邊形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四邊形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴,∴.(2)如圖②中,連接BD.∵四邊形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD=,∵D,B關(guān)于EF對稱,∴BD⊥EF,∴,∴,∴EF=.(3)如圖③中,過點(diǎn)F作FH⊥EG于H,過點(diǎn)P作PJ⊥BF于J.∵四邊形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG==1,由翻折可知:ED=EG,設(shè)ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四邊形HGPF是矩形,∴FH=PG=CD=2,∴EH=,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠JPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴,∴,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP=.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)、相似三角形的判定與性質(zhì),解題關(guān)鍵在于靈活運(yùn)用矩形的性質(zhì)、相似三角形的判定與性質(zhì),學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會利用參數(shù)解決問題,屬于中考壓軸題.14.(1)相等;(2)不成立,理由見解析;(3)或.【分析】(1)證明△ABD≌△ACE(SAS),即可得出;(2)當(dāng)在Rt△ADE和Rt△ABC中,,證明△ABD∽△ACE,求出BD與CE的比例解析:(1)相等;(2)不成立,理由見解析;(3)或.【分析】(1)證明△ABD≌△ACE(SAS),即可得出;(2)當(dāng)在Rt△ADE和Rt△ABC中,,證明△ABD∽△ACE,求出BD與CE的比例;(3)分兩種情況求出BD的長即可.【詳解】(1)相等;提示:如圖4所示.∵△ADE和△ABC均為等邊三角形,∴∴∴在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴.(2)不成立;理由如下:如圖5所示.在Rt△ADE和Rt△ABC中,∵∴∴∵∴△ABD∽△ACE∴∴故(1)中的結(jié)論不成立;(3)或.提示:分為兩種情況:①如圖6所示.易證:△ABD≌△ACE(SAS)∴∴∴由題意可知:設(shè),則在Rt△BCE中,由勾股定理得:∴解之得:(舍去)∴;②如圖7所示.易證:△ABD≌△ACE(SAS),設(shè),則在Rt△BCE中,由勾股定理得:∴解之得:(舍去)∴.綜上所述,或.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是學(xué)會運(yùn)用分類討論的思想考慮問題.15.(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2解析:(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證即可得;(3)由(2)證出就可得到,再根據(jù)三點(diǎn)在同一直線上分在CD左邊和右邊兩種不同的情況求出AG的長度,即可求出BE的長度.【詳解】(1)證明:四邊形是正方形,四邊形是矩形,四邊形是正方形;解:由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴故答案為:.(2)如下圖所示連接由旋轉(zhuǎn)性質(zhì)知在和中,,線段與之間的數(shù)量關(guān)系為;(3)解:當(dāng)正方形在繞點(diǎn)旋轉(zhuǎn)到如下圖所示時(shí):當(dāng)三點(diǎn)在一條直線上時(shí),由(2)可知,,∠CEG=∠CEA=∠ABC=90°,,當(dāng)正方形在繞點(diǎn)旋轉(zhuǎn)到如下圖所示時(shí):當(dāng)三點(diǎn)在一條直線上時(shí),由(2)可知,,∠CEA=∠ABC=90°,,故答案為:或.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.16.(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2解析:(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2)證明原理同(1),延長DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(3)補(bǔ)充完整圖后證明四邊形AEGC為矩形,進(jìn)而得到∠ABC=∠ABE=∠EBG=60°即可求解.【詳解】解:(1)延長DF到G點(diǎn),并使FG=DC,連接GE,如下圖所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(2)仍舊成立,理由如下:延長DF到G點(diǎn),并使FG=DC,連接GE,如下圖所示設(shè)BD延長線DM交AE于M點(diǎn),∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(3)如下圖所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四邊形AEGC為矩形,∴AC=EG,且AB=BE,∴Rt△ACBRt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDBRt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中由30°所對的直角邊等于斜邊的一半可知:.故答案為:.【點(diǎn)睛】本題屬于四邊形的綜合題,考查了三角形全等的性質(zhì)和判定,矩形的性質(zhì)和判定,本題的關(guān)鍵是延長DF到G點(diǎn)并使FG=DC,進(jìn)而構(gòu)造全等,本題難度稍大,需要作出合適的輔助線.17.(1)見解析;(2),見解析;(3)【分析】(1)連接CF,證明,即可解決問題;(2)連接EF,利用(1)中兩個(gè)三角形全等的性質(zhì)、四邊形內(nèi)角和及圖形中互補(bǔ)的角推導(dǎo)論證∠EGF=90°,再利用勾解析:(1)見解析;(2),見解析;(3)【分析】(1)連接CF,證明,即可解決問題;(2)連接EF,利用(1)中兩個(gè)三角形全等的性質(zhì)、四邊形內(nèi)角和及圖形中互補(bǔ)的角推導(dǎo)論證∠EGF=90°,再利用勾股定理即可解決問題;(3)證明RT△CNE≌RT△CMF,RT△GCN≌RT△GCM,即可解決問題.【詳解】(1)證明:如圖,連接.∵平分,,∴.∵,關(guān)于對稱,∴,.∴.在和中,∴.∴.(2)解:結(jié)論:.理由如下:連接,.∵,∴.∵,∴.∴.∵,∴.∴,.∵,∴.(3)如下圖,結(jié)論.理由如下:連接CG,CF,作CM⊥BF于點(diǎn)F,CN⊥AG于點(diǎn)N,∵,∴CN=CM,∵∠CNE=∠CMF=90°,CE=CF,∴RT△CNE≌RT△CMF.∴EN=FM,∵∠CNG=∠CMG=90°,CG=CG,∴RT△GCN≌RT△GCM,∴GN=GM,∠CGN=∠CGM=45°,∴CG=GN,∴GE+GF=GN-EN+GM+MF=2GN=CG.故GE+GF=CG.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題.18.(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年欽州幼兒師范高等??茖W(xué)校單招職業(yè)適應(yīng)性測試題庫帶答案詳解
- 2026年新疆師范高等??茖W(xué)校單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年長沙幼兒師范高等專科學(xué)校單招職業(yè)傾向性測試題庫及完整答案詳解1套
- 安全產(chǎn)品面試題及答案
- 廣職院護(hù)理面試題及答案
- 家庭雇傭保姆照顧老人協(xié)議書范本
- 蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院2026年公開招聘36人備考題庫及參考答案詳解一套
- 2025年新疆雙河市政服務(wù)有限責(zé)任公司面向社會招聘工作人員的備考題庫有答案詳解
- 2025年成都市金沙幼兒園教育集團(tuán)(教辦園)招聘儲備教師備考題庫參考答案詳解
- 2025年黃山市徽州區(qū)消防救援大隊(duì)政府專職消防員招聘14人備考題庫參考答案詳解
- 離婚財(cái)產(chǎn)分割培訓(xùn)課件
- 口腔科種植牙預(yù)防感染要點(diǎn)培訓(xùn)指南
- 小學(xué)語文板書基本功培訓(xùn)
- 2025甘肅酒泉市公安局招聘留置看護(hù)崗位警務(wù)輔助人員30人(第三批)考試筆試參考題庫附答案解析
- 測繪安全生產(chǎn)作業(yè)規(guī)范
- 2026年焦作大學(xué)單招職業(yè)適應(yīng)性考試必刷測試卷必考題
- 安全生產(chǎn)先進(jìn)評選方案
- 國開《廣告調(diào)查與預(yù)測》形考作業(yè)1-4答案
- 鈑金折彎工藝培訓(xùn)課件
- 別墅物業(yè)費(fèi)代繳合同協(xié)議2025年規(guī)定
- 2025年中級會計(jì)財(cái)務(wù)管理真題及答案
評論
0/150
提交評論