仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)仙桃職業(yè)學(xué)院《人工智能程序設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的知識(shí)圖譜是一種用于整合和表示知識(shí)的結(jié)構(gòu)。假設(shè)我們要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的說(shuō)法,哪一項(xiàng)是正確的?()A.知識(shí)圖譜只能表示簡(jiǎn)單的事實(shí)關(guān)系B.構(gòu)建知識(shí)圖譜不需要領(lǐng)域?qū)<业膮⑴cC.可以通過(guò)知識(shí)圖譜進(jìn)行知識(shí)推理和查詢D.知識(shí)圖譜的更新和維護(hù)非常容易2、人工智能中的無(wú)人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們?cè)谟懻摕o(wú)人駕駛汽車(chē)的責(zé)任歸屬問(wèn)題,以下關(guān)于無(wú)人駕駛責(zé)任的說(shuō)法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無(wú)人駕駛汽車(chē)的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任3、人工智能中的無(wú)監(jiān)督學(xué)習(xí)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無(wú)監(jiān)督學(xué)習(xí)的描述,不正確的是()A.聚類分析和主成分分析是常見(jiàn)的無(wú)監(jiān)督學(xué)習(xí)方法B.無(wú)監(jiān)督學(xué)習(xí)不需要事先標(biāo)注數(shù)據(jù),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征C.無(wú)監(jiān)督學(xué)習(xí)的結(jié)果通常難以解釋和評(píng)估,應(yīng)用范圍相對(duì)較窄D.可以用于數(shù)據(jù)預(yù)處理、特征提取和異常檢測(cè)等任務(wù)4、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無(wú)法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能5、人工智能在金融領(lǐng)域的應(yīng)用不斷拓展,假設(shè)一個(gè)銀行使用人工智能系統(tǒng)進(jìn)行信用評(píng)估,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.人工智能信用評(píng)估系統(tǒng)能夠完全取代人工評(píng)估,不會(huì)出現(xiàn)任何錯(cuò)誤B.數(shù)據(jù)的質(zhì)量和特征選擇對(duì)人工智能信用評(píng)估系統(tǒng)的準(zhǔn)確性至關(guān)重要C.人工智能信用評(píng)估系統(tǒng)只考慮客戶的財(cái)務(wù)數(shù)據(jù),不考慮其他非財(cái)務(wù)因素D.銀行不需要對(duì)人工智能信用評(píng)估系統(tǒng)的結(jié)果進(jìn)行審核和監(jiān)督6、可解釋性是人工智能模型面臨的一個(gè)重要問(wèn)題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過(guò)程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對(duì)于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級(jí)的差異7、人工智能中的知識(shí)圖譜技術(shù)可以將實(shí)體、關(guān)系和屬性以圖的形式表示,為智能應(yīng)用提供豐富的語(yǔ)義信息。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識(shí)抽取和融合方面最為關(guān)鍵?()A.自然語(yǔ)言處理技術(shù)B.圖像識(shí)別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運(yùn)用8、對(duì)于一個(gè)智能聊天機(jī)器人,需要理解用戶輸入的自然語(yǔ)言并生成合理的回復(fù)。假設(shè)用戶提出了一個(gè)復(fù)雜且含義模糊的問(wèn)題,聊天機(jī)器人要準(zhǔn)確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對(duì)于提高聊天機(jī)器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語(yǔ)料庫(kù),通過(guò)匹配來(lái)生成回復(fù)B.運(yùn)用深度學(xué)習(xí)模型,如Transformer架構(gòu)進(jìn)行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問(wèn)題的關(guān)鍵詞生成回復(fù)9、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂(lè)作品,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂(lè)作品,生成新的旋律和節(jié)奏B.可以與人類音樂(lè)家合作,共同創(chuàng)作出獨(dú)特的音樂(lè)作品C.人工智能生成的音樂(lè)作品在藝術(shù)價(jià)值和創(chuàng)造性上能夠超越人類音樂(lè)家的作品D.為音樂(lè)創(chuàng)作提供新的靈感和可能性,但不能完全取代人類的創(chuàng)造力10、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響11、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型的性能至關(guān)重要。假設(shè)我們訓(xùn)練了一個(gè)分類模型,以下哪個(gè)評(píng)估指標(biāo)在類別不平衡的情況下可能不太適用?()A.準(zhǔn)確率B.召回率C.F1值D.混淆矩陣12、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測(cè)出多個(gè)不同類別的物體,以下關(guān)于目標(biāo)檢測(cè)算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測(cè)算法在復(fù)雜場(chǎng)景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測(cè)C.目標(biāo)檢測(cè)算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無(wú)關(guān)D.所有的目標(biāo)檢測(cè)算法都能夠?qū)崟r(shí)處理視頻中的目標(biāo)檢測(cè)任務(wù)13、在人工智能的自動(dòng)駕駛道德決策中,假設(shè)車(chē)輛面臨一個(gè)不可避免的碰撞場(chǎng)景,需要在保護(hù)車(chē)內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車(chē)內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個(gè)無(wú)法確定的道德困境,沒(méi)有明確的決策原則14、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來(lái)增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無(wú)論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮15、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測(cè)和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋人工智能在圖像壓縮和編碼中的技術(shù)。2、(本題5分)說(shuō)明人工智能與傳統(tǒng)程序設(shè)計(jì)的區(qū)別。3、(本題5分)簡(jiǎn)述決策樹(shù)算法的原理和應(yīng)用。4、(本題5分)解釋語(yǔ)音合成的原理和方法。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)在Python中,運(yùn)用蒙特卡羅方法計(jì)算圓周率。通過(guò)隨機(jī)生成點(diǎn)的位置判斷是否在圓內(nèi),多次重復(fù)計(jì)算并估計(jì)圓周率的值,分析樣本數(shù)量對(duì)結(jié)果精度的影響。2、(本題5分)基于Python的OpenCV庫(kù)和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的物體追蹤系統(tǒng)。能夠在視頻流中準(zhǔn)確追蹤一個(gè)特定的物體,如一個(gè)移動(dòng)的籃球,并記錄其運(yùn)動(dòng)軌跡。3、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的環(huán)境中進(jìn)行自主決策,提高其智能水平和適應(yīng)性。4、(本題5分)使用Python的Scikit-learn庫(kù),實(shí)現(xiàn)One-ClassSVM算法對(duì)異常檢測(cè)任務(wù),通過(guò)調(diào)整核函數(shù)和參數(shù)優(yōu)化檢測(cè)效果。5、(本題5分)借助TensorFlow構(gòu)建一個(gè)推薦系統(tǒng)模型,根據(jù)用戶的音樂(lè)喜好為其推薦相關(guān)的歌曲。研究用戶興趣的動(dòng)態(tài)變化對(duì)推薦效果的影響。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)以某智能

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論