合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編_第1頁
合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編_第2頁
合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編_第3頁
合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編_第4頁
合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

合肥市育英中學(xué)中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編一、中考數(shù)學(xué)幾何綜合壓軸題1.問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(diǎn)(不與點(diǎn)B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點(diǎn)M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說明理由.問題探究:在“問題情境”的基礎(chǔ)上,(1)如圖2,若垂足P恰好為AE的中點(diǎn),連接BD,交MN于點(diǎn)Q,連接EQ,并延長交邊AD于點(diǎn)F.求∠AEF的度數(shù);(2)如圖3,當(dāng)垂足P在正方形ABCD的對角線BD上時,連接AN,將△APN沿著AN翻折,點(diǎn)P落在點(diǎn)P'處.若正方形ABCD的邊長為4,AD的中點(diǎn)為S,求P'S的最小值.問題拓展:如圖4,在邊長為4的正方形ABCD中,點(diǎn)M、N分別為邊AB、CD上的點(diǎn),將正方形ABCD沿著MN翻折,使得BC的對應(yīng)邊B'C'恰好經(jīng)過點(diǎn)A,C'N交AD于點(diǎn)F.分別過點(diǎn)A、F作AG⊥MN,F(xiàn)H⊥MN,垂足分別為G、H.若AG=,請直接寫出FH的長.解析:問題情境:.理由見解析;問題探究:(1);(2)的最小值為;問題拓展:.【分析】問題情境:過點(diǎn)B作BF∥MN分別交AE、CD于點(diǎn)G、F,證出四邊形MBFN為平行四邊形,得出NF=MB,證明△ABE≌△BCF得出BE=CF,即可得出結(jié)論;問題探究:(1)連接AQ,過點(diǎn)Q作HI∥AB,分別交AD、BC于點(diǎn)H、I,證出△DHQ是等腰直角三角形,HD=HQ,AH=QI,證明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直角三角形,得出∠EAQ=∠AEQ=45°,即可得出結(jié)論;(2)連接AC交BD于點(diǎn)O,則△APN的直角頂點(diǎn)P在OB上運(yùn)動,設(shè)點(diǎn)P與點(diǎn)B重合時,則點(diǎn)P′與點(diǎn)D重合;設(shè)點(diǎn)P與點(diǎn)O重合時,則點(diǎn)P′的落點(diǎn)為O′,由等腰直角三角形的性質(zhì)得出∠ODA=∠ADO′=45°,當(dāng)點(diǎn)P在線段BO上運(yùn)動時,過點(diǎn)P作PG⊥CD于點(diǎn)G,過點(diǎn)P′作P′H⊥CD交CD延長線于點(diǎn)H,連接PC,證明△APB≌△CPB得出∠BAP=∠BCP,證明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正方形的性質(zhì)得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH=45°,故∠P'DA=45°,點(diǎn)P'在線段DO'上運(yùn)動;過點(diǎn)S作SK⊥DO',垂足為K,即可得出結(jié)果;問題拓展:延長AG交BC于E,交DC的延長線于Q,延長FH交CD于P,則EG=AG=,PH=FH,得出AE=5,由勾股定理得出BE==3,得出CE=BC﹣BE=1,證明△ABE∽△QCE,得出QE=AE=,AQ=AE+QE=,證明△AGM∽△ABE,得出AM=,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,求出B'M=,AC'=1,證明△AFC'∽△MAB',得出AF=,證明△DFP∽△DAQ,得出FP=,得出FH=FP=.【詳解】問題情境:因?yàn)樗倪呅问钦叫?,所?過點(diǎn)作分別交于點(diǎn).所以四邊形為平行四邊形.所以.所以,所以,又因?yàn)?,所?,所以.因?yàn)?,所以,所?問題探究:(1)連接,過點(diǎn)作,分別交于點(diǎn).易得四邊形矩形.所以且.因?yàn)槭钦叫蔚膶蔷€,所以.所以是等腰直角三角形,.所以.因?yàn)槭堑拇怪逼椒志€,所以.所以.所以.所以.所以.所以是等腰直角三角形,,即.(2)如圖所示,連接交于點(diǎn),由題意易得的直角頂點(diǎn)在上運(yùn)動.設(shè)點(diǎn)與點(diǎn)重合,則點(diǎn)與點(diǎn)重合;設(shè)與點(diǎn)重合,則點(diǎn)的落點(diǎn)為.易知.當(dāng)點(diǎn)在線段上運(yùn)動時,過點(diǎn)作的垂線,垂足為,過點(diǎn)作,垂足為點(diǎn).易證:,所以,因?yàn)槭钦叫蔚膶蔷€,所以,易得,所以.所以.所以,故.所以點(diǎn)在線段上運(yùn)動.過點(diǎn)作,垂足為,因?yàn)辄c(diǎn)為的中點(diǎn),所以,則的最小值為.問題拓展:解:延長AG交BC于E,交DC的延長線于Q,延長FH交CD于P,如圖4:則EG=AG=,PH=FH,∴AE=5,在Rt△ABE中,BE==3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴,即,解得:,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M=,∵∠BAD=90°,∴∠B'AM=∠C'FA,∴△AFC'∽△MAB',∴,解得:∵AG⊥MN,F(xiàn)H⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴,即,解得:FP=,∴FH=.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解題的關(guān)鍵.2.(基礎(chǔ)鞏固)(1)如圖1,在中,M是的中點(diǎn),過B作,交的延長線于點(diǎn)D.求證:;(嘗試應(yīng)用)(2)在(1)的情況下載線段上取點(diǎn)E(如圖2),已知,,,求;(拓展提高)(3)如圖3,菱形中,點(diǎn)P在對角線上,且,點(diǎn)E為線段上一點(diǎn),.若,,求菱形的邊長.解析:(1)證明見解析;(2);(3).【分析】(1)證明,即可求解;(2)過點(diǎn)B作于點(diǎn)H,得到,進(jìn)而求解;(3)延長交于G,交延長線于F,連結(jié),可得,所以,設(shè)菱形邊長為,進(jìn)而可得出結(jié)論.【詳解】解:(1)證明:,,,是的中點(diǎn),,,.(2)由(1)得,,作,垂足為H,如圖所示:,在中,,.(3)延長交于G,交延長線于F,連結(jié),如圖所示:過作于由,,設(shè)菱形邊長為,在和中,即,解得(舍負(fù)),菱形的邊長為.【點(diǎn)睛】本題考查四邊形綜合題,主要考查了菱形的性質(zhì)、相似三角形的判定與性質(zhì),解直角三角形、勾股定理的運(yùn)用,正確作出輔助線是解題的關(guān)鍵.3.[初步嘗試](1)如圖①,在三角形紙片ABC中,∠ACB=90°,將△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,則AM與BM的數(shù)量關(guān)系為;[思考說理](2)如圖②,在三角形紙片ABC中,AC=BC=6,AB=10,將△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,求的值;[拓展延伸](3)如圖③,在三角形紙片ABC中,AB=9,BC=6,∠ACB=2∠A,將△ABC沿過頂點(diǎn)C的直線折疊,使點(diǎn)B落在邊AC上的點(diǎn)B′處,折痕為CM.①求線段AC的長;②若點(diǎn)O是邊AC的中點(diǎn),點(diǎn)P為線段OB′上的一個動點(diǎn),將△APM沿PM折疊得到△A′PM,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,A′M與CP交于點(diǎn)F,求的取值范圍.解析:(1)AM=BM;(2);(3)①AC=;②≤≤.【分析】(1)利用平行線分線段成比例定理解決問題即可.(2)利用相似三角形的性質(zhì)求出BM,AM即可.(3)①證明△BCM∽△BAC,推出由此即可解決問題.②證明△PFA′∽△MFC,推出,因?yàn)镃M=5,推出即可解決問題.【詳解】解:(1)如圖①中,∵△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,∴MN垂直平分線段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案為:AM=BM.(2)如圖②中,∵CA=CB=6,∴∠A=∠B,由題意MN垂直平分線段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴,∴,∴BM=,∴AM=AB﹣BM=10﹣,∴;(3)①如圖③中,由折疊的性質(zhì)可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴∴,∴BM=4,∴AM=CM=5,∴,∴AC=.②如圖③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴,∵CM=5,∴,∵點(diǎn)P在線段OB上運(yùn)動,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,等腰三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.4.(了解概念)在凸四邊形中,若一邊與它的兩條鄰邊組成的兩個內(nèi)角相等,則稱該四邊形為鄰等四邊形,這條邊叫做這個四邊形的鄰等邊.(理解運(yùn)用)(1)在鄰等四邊形中,,,若是這個鄰等四邊形的鄰等邊,則的度數(shù)為__________;(2)如圖,凸四邊形中,P為邊的中點(diǎn),,判斷四邊形是否為鄰等四邊形,并證明你的結(jié)論;(拓展提升)(3)在平面直角坐標(biāo)系中,為鄰等四邊形的鄰等邊,且邊與x軸重合,已知,,,若在邊上使的點(diǎn)P有且僅有1個,則m的值是__________.解析:(1)130°;(2)四邊形ABCD是鄰等四邊形,理由見解析;(3)﹣5±4【分析】(1)根據(jù)鄰等四邊形的定義即可求解;(2)由△ADP∽△PDC,可得,∠DAP=∠DPC,∠APD=∠PCD,由P為AB的中點(diǎn),可得AP=BP,則,可證△BPC∽△ADP,由相似三角形的性質(zhì)得出∠A=∠B即可;(3)①若點(diǎn)B在點(diǎn)A右側(cè),如圖,由AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,可證△ADP∽△BPC,可得=,設(shè)點(diǎn)P(n,0),由等腰直角三角形可求∠BAD=45°,可求B、C橫坐標(biāo)之差為3,B(m+3,0),將AP,BP,AD,BC,代入得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,可求得m=﹣5+4;②若點(diǎn)B在點(diǎn)A左側(cè),可求得∠BAD=135°,可證△ADP∽△BPC,可得=,可求得B、C橫坐標(biāo)之差為3,,可求得m=﹣5﹣4.【詳解】解:(1)∵CD為鄰等邊,∴∠C=∠D,又∵,,∴∠C=∠D=(360°﹣∠A﹣∠B)÷2=130°,∴∠C=130°.故答案為:130°;(2)四邊形ABCD是鄰等四邊形,理由如下:∵△ADP∽△PDC,∴,∠DAP=∠DPC,∠APD=∠PCD,∠ADP=∠PDC,又∵P為AB的中點(diǎn),∴AP=BP,∴,∴,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四邊形ABCD為鄰等四邊形;(3)若點(diǎn)B在點(diǎn)A右側(cè),如圖,∵AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴=,設(shè)點(diǎn)P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,過點(diǎn)C作CE⊥x軸于點(diǎn)E,則∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵點(diǎn)C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD==,BC==,代入=得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±4,又∵點(diǎn)C在點(diǎn)D右側(cè),∴m=﹣5+4;②若點(diǎn)B在點(diǎn)A左側(cè),如圖,此時,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴=,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=,BC=,∴,解得:m=﹣5±4,又∵點(diǎn)C在點(diǎn)D左側(cè),∴m=﹣5﹣4;綜上所述:m=﹣5±4.【點(diǎn)睛】本題是相似綜合題,考查新定義圖形,仔細(xì)閱讀題目,抓住定義中的性質(zhì),會驗(yàn)證新定義圖形,相似三角形的判定與性質(zhì),一元二次方程根的判別式,利用相似三角形的性質(zhì)構(gòu)造關(guān)于n的一元二次方程是解題關(guān)鍵.5.綜合與實(shí)踐(1)(探索發(fā)現(xiàn))在中.,,點(diǎn)為直線上一動點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)作交直線于點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)得到,連接.如圖(1),當(dāng)點(diǎn)在線段上,且時,試猜想:①與之間的數(shù)量關(guān)系:______;②______.(2)(拓展探究)如圖(2),當(dāng)點(diǎn)在線段上,且時,判斷與之間的數(shù)量關(guān)系及的度數(shù),請說明理由.(3)(解決問題)如圖(3),在中,,,,點(diǎn)在射線上,將繞點(diǎn)順時針旋轉(zhuǎn)得到,連接.當(dāng)時,直接寫出的長.解析:(1)①;②;(2),.理由見解析;(3)的長為1或2.【分析】(1)由“SAS”△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解決問題;(2)結(jié)論:AF=BF,∠ABE=a.由“SAS”△ADF≌△EDB,即可解決問題;(3)分當(dāng)點(diǎn)D在線段BC上和當(dāng)點(diǎn)D在BC的延長線上兩種情形討論,利用平行線分線段成比例可求解.【詳解】解:(1)如圖1中,設(shè)AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,且DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案為AF=BE,90°.(2),.理由:∵,∴,.∵,∴.∴.∴∵,,,∴.又∵,∴.∴,.∴,,∴.(3)1或2.解:當(dāng)點(diǎn)在線段上時,過點(diǎn)作交直線于點(diǎn),如圖(1).∵,∴.∵,∴.∵,∴,.∵,,∴.∵,∴.∴.∴.又,∴,.當(dāng)點(diǎn)在線段的延長線上時,過點(diǎn)作交的延長線于點(diǎn),如圖(2).∵,∴.∴.∴.同理可得.綜上可得,的長為1或2.【點(diǎn)睛】本題考查幾何變換綜合題、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.6.問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.①請?zhí)骄緼D與BD之間的位置關(guān)系:________;②若AC=BC=,DC=CE=,則線段AD的長為________;拓展延伸(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時,畫出圖形,并求線段AD的長.解析:(1)①垂直,②4;(2)作圖見解析,或【分析】(1)①由“SAS”可證△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②過點(diǎn)C作CF⊥AD于點(diǎn)F,由勾股定理可求DF,CF,AF的長,即可求AD的長;(2)分點(diǎn)D在BC左側(cè)和BC右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.【詳解】解:(1)∵△ABC和△DEC均為等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案為:垂直②如圖,過點(diǎn)C作CF⊥AD于點(diǎn)F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴∴AD=AF+DF=4故答案為:4.(2)①如圖:∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,∴AB=2,DE=2,∠ACD=∠BCE,.∴△ACD∽△BCE.∴∠ADC=∠E,.又∵∠CDE+∠E=90°,∴∠ADC+∠CDE=90°,即∠ADE=90°.∴AD⊥BE.設(shè)BE=x,則AD=x.在Rt△ABD中,,即.解得(負(fù)值舍去).∴AD=.②如圖,同①設(shè)BE=x,則AD=x.在Rt△ABD中,,即.解得(負(fù)值舍去).∴AD=.綜上可得,線段AD的長為【點(diǎn)睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識點(diǎn),關(guān)鍵是添加恰當(dāng)輔助線.7.在中,,過點(diǎn)作直線,將繞點(diǎn)順時針旋轉(zhuǎn)得到(點(diǎn)的對應(yīng)點(diǎn)分別為).(1)問題發(fā)現(xiàn)如圖1,若與重合時,則的度數(shù)為____________;(2)類比探究:如圖2,設(shè)與BC的交點(diǎn)為,當(dāng)為的中點(diǎn)時,求線段的長;(3)拓展延伸在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.解析:(1)60;(2);(3)【分析】(1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得,即可得到∠A'CB=30°,∠ACA'=60°;(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到,依據(jù)tan∠Q=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.【詳解】解:(1)由旋轉(zhuǎn)可得:,,,,,,,,.(2)為的中點(diǎn),,山旋轉(zhuǎn)可得,,,,,,,;(3)四邊形四邊形最小即最小,,取的中點(diǎn),,,即,當(dāng)最小時,最小,,即與正合時,最小,,,的最小值,四邊形=.【點(diǎn)睛】此題考查四邊形綜合題,旋轉(zhuǎn)的性質(zhì),解直角三角形以及直角三角形的性質(zhì)的綜合運(yùn)用,解題關(guān)鍵在于掌握旋轉(zhuǎn)變換中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.8.小明研究了這樣一道幾何題:如圖1,在中,把繞點(diǎn)順時針旋轉(zhuǎn)得到,把繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接.當(dāng)時,請問邊上的中線與的數(shù)量關(guān)系是什么?以下是他的研究過程:特例驗(yàn)證:(1)①如圖2,當(dāng)為等邊三角形時,猜想與的數(shù)量關(guān)系為_______;②如圖3,當(dāng),時,則長為________.猜想論證:(2)在圖1中,當(dāng)為任意三角形時,猜想與的數(shù)量關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形,,,,,,在四邊形內(nèi)部是否存在點(diǎn),使與之間滿足小明探究的問題中的邊角關(guān)系?若存在,請畫出點(diǎn)的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.解析:(1)①;②4,(2);理由見解析,(3)存在;【分析】(1)①首先證明是含有的直角三角形,可得,即可解決問題;②首先證明,根據(jù)直角三角形斜邊中線定理即可解決問題.(2)與的數(shù)量關(guān)系為,如圖5,延長到,使,連接、,先證四邊形是平行四邊形,再證明,即可解決問題.(3)存在,如圖6,延長交的延長線于,作于,做直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,先證明,,再證明,即可得出結(jié)論,再在中,根據(jù)勾股定理,即可求出的長.【詳解】(1)①如圖2,∵是等邊三角形,把繞點(diǎn)順時針旋轉(zhuǎn)得到,把繞點(diǎn)逆時針旋轉(zhuǎn)得到,∴,又∵是邊上的中線,∴,∴,即,∵,,∴,∴,∴在中,,,∴.故答案為:.②如圖3,∵,,∴,即和為直角三角形,∵把繞點(diǎn)順時針旋轉(zhuǎn)得到,把繞點(diǎn)逆時針旋轉(zhuǎn)得到,∴,,∴在和中,∴,∴,∵是邊上的中線,為直角三角形,∴,又∵,∴.故答案為:.(2),如圖5,延長到,使,連接、,圖5∵,,∴四邊形是平行四邊形,∴,∵,,∴,∵,∴在和中,∴,∴,∴.(3)存在,如圖6,延長交的延長線于,作于,作直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,圖6∵,∴,∵,∴,在中,∵,,,∴,,,在中,∵,,,∴,∴,∵,∴,∵,∴,,在中,∵,,∴,∴,∴,∴,∵,∴四邊形是矩形,∴,∴,∴是等邊三角形,∴,∵,∴,∴,∴與之間滿足小明探究的問題中的邊角關(guān)系,在中,∵,,,∴.【點(diǎn)睛】本題考查了三角形的綜合問題.掌握全等三角形的性質(zhì)以及判定定理、直角三角形斜邊中線定理、解直角三角形、勾股定理、中線的性質(zhì)是解題的關(guān)鍵.在處理三角形的邊旋轉(zhuǎn)問題時,旋轉(zhuǎn)前后邊長不變,根據(jù)已知角度變化,求得線段之間關(guān)系.在證明某點(diǎn)是否存在問題時,先假設(shè)這點(diǎn)存在,能求出相關(guān)線段或坐標(biāo),即證實(shí)存在性.9.[問題解決](1)如圖1.在平行四邊形紙片ABCD(AD>AB)中,將紙片沿過點(diǎn)A的直線折疊,使點(diǎn)B落在AD上的點(diǎn)處,折線AE交BC于點(diǎn)E,連接B'E.求證:四邊形是菱形.[規(guī)律探索](2)如圖2,在平行四邊形紙片ABCD(AD>AB)中,將紙片沿過點(diǎn)P的直線折疊,點(diǎn)B恰好落在AD上的點(diǎn)Q處,點(diǎn)A落在點(diǎn)A′處,得到折痕FP,那么△PFQ是等腰三角形嗎?請說明理由.[拓展應(yīng)用](3)如圖3,在矩形紙片ABCD(AD>AB)中,將紙片沿過點(diǎn)P的直線折疊,得到折痕FP,點(diǎn)B落在紙片ABCD內(nèi)部點(diǎn)處,點(diǎn)A落在紙片ABCD外部點(diǎn)處,與AD交于點(diǎn)M,且M=M.已知:AB=4,AF=2,求BP的長.解析:(1)證明見解析;(2)是,理由見解析;(3).【分析】(1)由平行線的性質(zhì)和翻折可推出,即.故四邊形是平行四邊形,再由翻折可知,即證明平行四邊形是菱形.(2)由翻折和平行線的性質(zhì)可知,,即得出,即是等腰三角形.(3)延長交AD于點(diǎn)G,根據(jù)題意易證,得出結(jié)論,.根據(jù)(2)同理可知為等腰三角形,即FG=PG.再在中,,即可求出,最后即可求出.【詳解】(1)由平行四邊形的性質(zhì)可知,∴,由翻折可知,∴,∴.∴四邊形是平行四邊形.再由翻折可知,∴四邊形是菱形.(2)由翻折可知,∵,∴,∴,∴QF=QP,∴是等腰三角形.(3)如圖,延長交AD于點(diǎn)G,根據(jù)題意可知,在和中,,∴,∴,.根據(jù)(2)同理可知為等腰三角形.∴FG=PG.∵,∴在中,,∴,∴,∴.【點(diǎn)睛】本題為矩形的折疊問題.考查矩形的性質(zhì),折疊的性質(zhì),平行線的性質(zhì),菱形的判定,等腰三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理,綜合性強(qiáng).掌握折疊的性質(zhì)和正確的連接輔助線是解答本題的關(guān)鍵.10.我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在中,,.,試判斷是否是“等高底”三角形,請說明理由.(2)問題探究:如圖2,是“等高底”三角形,是“等底”,作關(guān)于所在直線的對稱圖形得到,連結(jié)交直線于點(diǎn).若點(diǎn)是的重心,求的值.(3)應(yīng)用拓展:如圖3,已知,與之間的距離為2.“等高底”的“等底”在直線上,點(diǎn)在直線上,有一邊的長是的倍.將繞點(diǎn)按順時針方向旋轉(zhuǎn)得到,所在直線交于點(diǎn).求的值.解析:(1)證明見解析;(2)(3)的值為,,2【解析】分析:(1)過點(diǎn)A作AD⊥直線CB于點(diǎn)D,可以得到AD=BC=3,即可得到結(jié)論;(2)根據(jù)ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC與ΔABC關(guān)于直線BC對稱,得到∠ADC=90°,由重心的性質(zhì),得到BC=2BD.設(shè)BD=x,則AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到結(jié)論;(3)分兩種情況討論即可:①當(dāng)AB=BC時,再分兩種情況討論;②當(dāng)AC=BC時,再分兩種情況討論即可.詳解:(1)是.理由如下:如圖1,過點(diǎn)A作AD⊥直線CB于點(diǎn)D,∴ΔADC為直角三角形,∠ADC=90°.∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即ΔABC是“等高底”三角形.(2)如圖2,∵ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ΔA′BC與ΔABC關(guān)于直線BC對稱,∴∠ADC=90°.∵點(diǎn)B是ΔAA′C的重心,∴BC=2BD.設(shè)BD=x,則AD=BC=2x,∴CD=3x,∴由勾股定理得AC=x,∴.(3)①當(dāng)AB=BC時,Ⅰ.如圖3,作AE⊥l1于點(diǎn)E,DF⊥AC于點(diǎn)F.∵“等高底”ΔABC的“等底”為BC,l1//l2,l1與l2之間的距離為2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=.∵ΔABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴∠CDF=45°.設(shè)DF=CF=x.∵l1//l2,∴∠ACE=∠DAF,∴,即AF=2x.∴AC=3x=,可得x=,∴CD=x=.Ⅱ.如圖4,此時ΔABC是等腰直角三角形,∵ΔABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴ΔACD是等腰直角三角形,∴CD=AC=.②當(dāng)AC=BC時,Ⅰ.如圖5,此時△ABC是等腰直角三角形.∵ΔABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到ΔA′B′C,∴A′C⊥l1,∴CD=AB=BC=2.Ⅱ.如圖6,作AE⊥l1于點(diǎn)E,則AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴ΔABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到ΔA′B′C時,點(diǎn)A′在直線l1上,∴A′C∥l2,即直線A′C與l2無交點(diǎn).綜上所述:CD的值為,,2.點(diǎn)睛:本題是幾何變換-旋轉(zhuǎn)綜合題.考查了重心的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)以及閱讀理解能力.解題的關(guān)鍵是對新概念“等高底”三角形的理解.11.(1)閱讀理解:我國是最早了解勾股定理的國家之一,它被記載于我國古代的數(shù)學(xué)著作《周髀算經(jīng)》中.漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅如圖①所示的“弦圖”,后人稱之為“趙爽弦圖”.根據(jù)“趙爽弦圖”寫出勾股定理和推理過程;(2)問題解決:勾股定理的證明方法有很多,如圖②是古代的一種證明方法:過正方形的中心,作,將它分成4份.所分成的四部分和以為邊的正方形恰好能拼成以為邊的正方形.若,求的值;(3)拓展探究:如圖③,以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過程就可以得到“勾股樹”的部分圖形.設(shè)大正方形的邊長為定值,小正方形的邊長分別為.已知,當(dāng)角變化時,探究與的關(guān)系式,并寫出該關(guān)系式及解答過程(與的關(guān)系式用含的式子表示).解析:(1)見詳解;(2)EF=或;(3)c+b=n,理由見詳解【分析】(1)根據(jù)大正方形的面積等于四個全等的直角三角形的面積與中間小正方形面積的和,即可得到結(jié)論;(2)設(shè)EF=a,F(xiàn)D=b,由圖形的特征可知:a+b=12,a-b=±5,進(jìn)而即可求解;(3)設(shè)正方形E的邊長為e,正方形F的邊長為f,由相似三角形的性質(zhì)可知:,結(jié)合勾股定理,可得,進(jìn)而即可求解.【詳解】(1)證明:∵在圖①中,大正方形的面積等于四個全等的直角三角形的面積與中間小正方形面積的和.∴c2=ab×4+(b?a)2,化簡得:a2+b2=c2;(2)由題意得:正方形ACDE被分成4個全等的四邊形,設(shè)EF=a,F(xiàn)D=b,∴a+b=12,∵正方形ABIJ是由正方形ACDE被分成的4個全等的四邊形和正方形CBLM拼成,∴,,,當(dāng)EF>DF時,∵,∴a-b=5,∴,解得:a=,∴EF=;同理,當(dāng)EF<DF時,EF=故EF=或(3)設(shè)正方形E的邊長為e,正方形F的邊長為f,∵,∴圖中①與②與③,三個直角三角形相似,∴,即:,∵圖形③是直角三角形,∴,∴,即:c+b=n,【點(diǎn)睛】本題主要考查勾股定理及其證明過程,相似三角形的判定和性質(zhì),找準(zhǔn)圖形中線段長和面積的數(shù)量關(guān)系,是解題的關(guān)鍵.12.(1)問題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為

.(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題

如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.

解析:(1)AD=BE,AD⊥BE.(2)AD=BE,AD⊥BE.(3)5-3≤PC≤5+3.【分析】(1)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延長BE交AD于點(diǎn)F,由垂直定義得AD⊥BE.(2)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定義得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,PC=BE,當(dāng)P、E、B共線時,BE最小,最小值=PB-PE;當(dāng)P、E、B共線時,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.【詳解】(1)結(jié)論:AD=BE,AD⊥BE.理由:如圖1中,∵△ACB與△DCE均為等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延長BE交AD于點(diǎn)F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案為AD=BE,AD⊥BE.(2)結(jié)論:AD=BE,AD⊥BE.理由:如圖2中,設(shè)AD交BE于H,AD交BC于O.∵△ACB與△DCE均為等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如圖3中,作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,∴PC=BE,圖3-1中,當(dāng)P、E、B共線時,BE最小,最小值=PB-PE=5-3,圖3-2中,當(dāng)P、E、B共線時,BE最大,最大值=PB+PE=5+3,∴5-3≤BE≤5+3,即5-3≤PC≤5+3.【點(diǎn)睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找三角形全等的條件,學(xué)會添加輔助線,構(gòu)造全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題.13.(1)(探究發(fā)現(xiàn))如圖1,的頂點(diǎn)在正方形兩條對角線的交點(diǎn)處,,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,的兩邊分別與正方形的邊和交于點(diǎn)和點(diǎn)(點(diǎn)與點(diǎn),不重合).則之間滿足的數(shù)量關(guān)系是.(2)(類比應(yīng)用)如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當(dāng)時,上述結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請猜想結(jié)論并說明理由.(3)(拓展延伸)如圖3,,,,平分,,且,點(diǎn)是上一點(diǎn),,求的長.解析:(1)(2)結(jié)論不成立.(3)【分析】(1)結(jié)論:.根據(jù)正方形性質(zhì),證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(2)結(jié)論不成立..連接,在上截取,連接.根據(jù)菱形性質(zhì),證,四點(diǎn)共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質(zhì)證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(3)由可知是鈍角三角形,,作于,設(shè).根據(jù)勾股定理,可得到,由,得四點(diǎn)共圓,再證是等邊三角形,由(2)可知:,故可得.【詳解】(1)如圖1中,結(jié)論:.理由如下:∵四邊形是正方形,∴,,,∵,∴,∴,∴,∴.故答案為.(2)如圖2中,結(jié)論不成立..理由:連接,在上截取,連接.∵四邊形是菱形,,∴,∵,∴四點(diǎn)共圓,∴,∵,∴是等邊三角形,∴,,∵,,∴是等邊三角形,∴,,∴,∴,∴,∴,(3)如圖3中,由可知是鈍角三角形,,作于,設(shè).在中,,∵,∴,解得(舍棄)或,∴,∵,∴四點(diǎn)共圓,∵平分,∴,∴,∵,∴是等邊三角形,由(2)可知:,∴.【點(diǎn)睛】考核知識點(diǎn):正方形性質(zhì),全等三角形判定和性質(zhì),等邊三角形判定和性質(zhì),圓的性質(zhì).綜合運(yùn)用各個幾何性質(zhì)定理是關(guān)鍵;此題比較綜合.14.小圓同學(xué)對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.(一)猜測探究在中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)按順時針方向旋轉(zhuǎn)與相等的角度,得到線段,連接.(1)如圖1,若是線段上的任意一點(diǎn),請直接寫出與的數(shù)量關(guān)系是,與的數(shù)量關(guān)系是;(2)如圖2,點(diǎn)是延長線上點(diǎn),若是內(nèi)部射線上任意一點(diǎn),連接,(1)中結(jié)論是否仍然成立?若成立,請給予證明,若不成立,請說明理由.(二)拓展應(yīng)用如圖3,在中,,,,是上的任意點(diǎn),連接,將繞點(diǎn)按順時針方向旋轉(zhuǎn),得到線段,連接.求線段長度的最小值.解析:(一)(1)結(jié)論:,.理由見解析;(2)如圖2中,①中結(jié)論仍然成立.理由見解析;(二)的最小值為.【分析】(一)①結(jié)論:,.根據(jù)證明≌即可.②①中結(jié)論仍然成立.證明方法類似.(二)如圖3中,在上截取,連接,作于,作于.理由全等三角形的性質(zhì)證明,推出當(dāng)?shù)闹底钚r,的值最小,求出的值即可解決問題.【詳解】(一)(1)結(jié)論:,.理由:如圖1中,∵,∴,∴,∵,,∴≌(),∴.故答案為,.(2)如圖2中,①中結(jié)論仍然成立.理由:∵,∴,∴,∵,,∴≌(),∴.(二)如圖3中,在上截取,連接,作于,作于.∵,∴,∵,,∴≌(),∴,∴當(dāng)?shù)闹底钚r,的值最小,在中,∵,,∴,∵,∴,∴,在,∵,∴,根據(jù)垂線段最短可知,當(dāng)點(diǎn)與重合時,的值最小,∴的最小值為.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),解直角三角形,垂線段最短等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會利用垂線段最短解決最值問題,屬于中考壓軸題.15.如圖1,△ABC和△DCE都是等邊三角形.探究發(fā)現(xiàn)(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.拓展運(yùn)用(2)若B、C、E三點(diǎn)不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.(3)若B、C、E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.解析:(1)全等,理由見解析;(2)BD=;(3)△ACD的面積為,AD=.【分析】(1)依據(jù)等式的性質(zhì)可證明∠BCD=∠ACE,然后依據(jù)SAS可證明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理計(jì)算AE的長,可得BD的長;(3)過點(diǎn)A作AF⊥CD于F,先根據(jù)平角的定義得∠ACD=60°,利用特殊角的三角函數(shù)可得AF的長,由三角形面積公式可得△ACD的面積,最后根據(jù)勾股定理可得AD的長.【詳解】解:(1)全等,理由是:∵△ABC和△DCE都是等邊三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如圖3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等邊三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如圖2,過點(diǎn)A作AF⊥CD于F,∵B、C、E三點(diǎn)在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,F(xiàn)D=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【點(diǎn)睛】本題考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形,勾股定理等,第(3)小題巧作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.16.如圖,四邊形是正方形,點(diǎn)為對角線的中點(diǎn).(1)問題解決:如圖①,連接,分別取,的中點(diǎn),,連接,則與的數(shù)量關(guān)系是_____,位置關(guān)系是____;(2)問題探究:如圖②,是將圖①中的繞點(diǎn)按順時針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.判斷的形狀,并證明你的結(jié)論;(3)拓展延伸:如圖③,是將圖①中的繞點(diǎn)按逆時針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.若正方形的邊長為1,求的面積.解析:(1),;(2)的形狀是等腰直角三角形,理由見解析;(3)【分析】(1)根據(jù)題意可得PQ為△BOC的中位線,再根據(jù)中位線的性質(zhì)即可求解;(2)連接并延長交于點(diǎn),根據(jù)題意證出,為等腰直角三角形,也為等腰直角三角形,由且可得是等腰直角三角形;(3)延長交邊于點(diǎn),連接,.證出四邊形是矩形,為等腰直角三角形,,再證出為等腰直角三角形,根據(jù)圖形的性質(zhì)和勾股定理求出O′A,O′B和BQ的長度,即可計(jì)算出的面積.【詳解】解:(1)∵點(diǎn)P和點(diǎn)Q分別為,的中點(diǎn),∴PQ為△BOC的中位線,∵四邊形是正方形,∴AC⊥BO,∴,;故答案為:,;(2)的形狀是等腰直角三角形.理由如下:連接并延長交于點(diǎn),由正方形的性質(zhì)及旋轉(zhuǎn)可得,∠,是等腰直角三角形,,.∴,.又∵點(diǎn)是的中點(diǎn),∴.∴.∴,.∴,∴.∴為等腰直角三角形.∴,.∴也為等腰直角三角形.又∵點(diǎn)為的中點(diǎn),∴,且.∴的形狀是等腰直角三角形.(3)延長交邊于點(diǎn),連接,.∵四邊形是正方形,是對角線,∴.由旋轉(zhuǎn)得,四邊形是矩形,∴,.∴為等腰直角三角形.∵點(diǎn)是的中點(diǎn),∴,,.∴.∴,.∴.∴.∴為等腰直角三角形.∵是的中點(diǎn),∴,.∵,∴,,∴.∴.【點(diǎn)睛】本題考查正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、旋轉(zhuǎn)圖形的性質(zhì)、三角形中位線定理、全等三角形的判定與性質(zhì)和勾股定理,根據(jù)題意作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.17.問題提出如圖(1),在和中,,,,點(diǎn)在內(nèi)部,直線與交于點(diǎn),線段,,之間存在怎樣的數(shù)量關(guān)系?問題探究(1)先將問題特殊化.如圖(2),當(dāng)點(diǎn),重合時,直接寫出一個等式,表示,,之間的數(shù)量關(guān)系;(2)再探究一般情形.如圖(1),當(dāng)點(diǎn),不重合時,證明(1)中的結(jié)論仍然成立.問題拓展如圖(3),在和中,,,(是常數(shù)),點(diǎn)在內(nèi)部,直線與交于點(diǎn),直接寫出一個等式,表示線段,,之間的數(shù)量關(guān)系.解析:(1).(2)見解析;問題拓展:.【分析】(1)先證明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;(2)過點(diǎn)作交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論