版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Introductionto
Agents
G.e
Authors:AlanBlount,AntonioGulli,ShubhamSaboo,
MichaelZimmermann,andVladimirVuskovic
IntroductiontoAgentsandAgentarchitectures
Acknowledgements
Contentcontributors
EnriqueChan
MikeClark
DerekEgan
AnantNawalgariaKanchanaPatlollaJuliaWiesinger
Curatorsandeditors
AnantNawalgariaKanchanaPatlolla
Designer
MichaelLanning
November20252
Tableofcontents
FromPredictiveAItoAutonomousAgents 6
IntroductiontoAIAgents· 8
TheAgenticProblem-SolvingProcess ·10
ATaxonomyofAgenticSystems ·14
Level0:TheCoreReasoningSystem 15
Level1:TheConnectedProblem-Solver ·15
Level2:TheStrategicProblem-Solver· ·16
Level3:TheCollaborativeMulti-AgentSystem 17
Level4:TheSelf-EvolvingSystem ·18
CoreAgentArchitecture:Model,Tools,andOrchestration ·19
Model:The“Brain”ofyourAIAgent ·19
Tools:The"Hands"ofyourAIAgent 20
RetrievingInformation:GroundinginReality 21
ExecutingActions:ChangingtheWorld· ·21
FunctionCalling:ConnectingToolstoyourAgent ·22
Tableofcontents
TheOrchestrationLayer 22
CoreDesignChoices 23
InstructwithDomainKnowledgeandPersona· 23
AugmentwithContext. ·24
Multi-AgentSystemsandDesignPatterns 24
AgentDeploymentandServices ·26
AgentOps:AStructuredApproachtotheUnpredictable ·27
MeasureWhatMatters:InstrumentingSuccessLikeanA/BExperiment 29
QualityInsteadofPass/Fail:UsingaLMJudge ·29
Metrics-DrivenDevelopment:YourGo/No-GoforDeployment ·30
DebugwithOpenTelemetryTraces:Answering"Why?" ·30
CherishHumanFeedback:GuidingYourAutomation 31
AgentInteroperability ·31
AgentsandHumans 32
AgentsandAgents 33
AgentsandMoney34
Tableofcontents
SecuringaSingleAgent:TheTrustTrade-Off 34
AgentIdentity:ANewClassofPrincipal ·35
PoliciestoConstrainAccess 37
SecuringanADKAgent 37
ScalingUpfromaSingleAgenttoanEnterpriseFleet 39
SecurityandPrivacy:HardeningtheAgenticFrontier 40
AgentGovernance:AControlPlaneinsteadofSprawl 40
Howagentsevolveandlearn 42
Howagentslearnandselfevolve 43
SimulationandAgentGym-thenextfrontier ·46
Examplesofadvancedagents 47
GoogleCo-Scientist 47
AlphaEvolveAgent 49
Conclusion ·51
Endnotes 52
IntroductiontoAgentsandAgentarchitectures
AgentsarethenaturalevolutionofLanguageModels,madeusefulinsoftware.
FromPredictiveAItoAutonomousAgents
Artificialintelligenceischanging.Foryears,thefocushasbeenonmodelsthatexcelat
passive,discretetasks:answeringaquestion,translatingtext,orgeneratinganimagefromaprompt.Thisparadigm,whilepowerful,requiresconstanthumandirectionforeverystep.We'renowseeingaparadigmshift,movingfromAIthatjustpredictsorcreatescontenttoanewclassofsoftwarecapableofautonomousproblem-solvingandtaskexecution.
ThisnewfrontierisbuiltaroundAIagents.AnagentisnotsimplyanAImodelinastatic
workflow;it'sacompleteapplication,makingplansandtakingactionstoachievegoals.It
combinesaLanguageModel's(LM)abilitytoreasonwiththepracticalabilitytoact,allowing
November20256
IntroductiontoAgentsandAgentarchitectures
November20257
ittohandlecomplex,multi-steptasksthatamodelalonecannot.Thecriticalcapabilityisthatagentscanworkontheirown,figuringoutthenextstepsneededtoreachagoalwithoutapersonguidingthemateveryturn.
Thisdocumentisthefirstinafive-partseries,actingasaformalguideforthedevelopers,architects,andproductleaderstransitioningfromproofs-of-concepttorobust,
production-gradeagenticsystems.Whilebuildingasimpleprototypeisstraightforward,ensuringsecurity,qualityandreliabilityisasignificantchallenge.Thispaperprovidesacomprehensivefoundation:
?CoreAnatomy:Deconstructinganagentintoitsthreeessentialcomponents:thereasoningModel,actionableTools,andthegoverningOrchestrationLayer.
?ATaxonomyofCapabilities:Classifyingagentsfromsimple,connectedproblem-solverstocomplex,collaborativemulti-agentsystems.
?ArchitecturalDesign:Divingintothepracticaldesignconsiderationsforeachcomponent,frommodelselectiontotoolimplementation.
?BuildingforProduction:EstablishingtheAgentOpsdisciplineneededtoevaluate,debug,secure,andscaleagenticsystemsfromasingleinstancetoafleetwith
enterprisegovernance.
Buildingontheprevious
Agentswhitepaper
1and
AgentCompanion
2;thisguideprovides
thefoundationalconceptsandstrategicframeworksyouwillneedtosuccessfullybuild,
deploy,andmanagethisnewgenerationofintelligentapplicationswhichcanreason,actandobservetoaccomplish
goals
3.
IntroductiontoAgentsandAgentarchitectures
November20258
WordsareinsufficienttodescribehowhumansinteractwithAl.Wetendto
anthropomorphizeandusehumantermslike“think”and“reason”and“know.”WedonItyethavewordsfor"knowwithsemanticmeaning"vs"knowwithhighprobabilityof
maximizingarewardfunction."Thosearetwodifferenttypesofknowing/buttheresultsarethesame99.X%ofthetime.
IntroductiontoAIAgents
Inthesimplestterms,anAIAgentcanbedefinedasthecombinationofmodels,tools,anorchestrationlayer,andruntimeserviceswhichusestheLMinalooptoaccomplishagoal.Thesefourelementsformtheessentialarchitectureofanyautonomoussystem.
?TheModel(The"Brain"):Thecorelanguagemodel(LM)orfoundationmodelthatservesastheagent'scentralreasoningenginetoprocessinformation,evaluateoptions,and
makedecisions.Thetypeofmodel(general-purpose,fine-tuned,ormultimodal)dictatestheagent'scognitivecapabilities.AnagenticsystemistheultimatecuratoroftheinputcontextwindowtheLM.
?Tools(The"Hands"):Thesemechanismsconnecttheagent'sreasoningtotheoutside
world,enablingactionsbeyondtextgeneration.TheyincludeAPIextensions,code
functions,anddatastores(likedatabasesorvectorstores)foraccessingreal-time,factualinformation.AnagenticsystemallowsaLMtoplanwhichtoolstouse,executesthetool,andputsthetoolresultsintotheinputcontextwindowofthenextLMcall.
?TheOrchestrationLayer(The"NervousSystem"):Thegoverningprocessthat
managestheagent'soperationalloop.Ithandlesplanning,memory(state),andreasoningstrategyexecution.Thislayerusespromptingframeworksandreasoningtechniques(like
IntroductiontoAgentsandAgentarchitectures
November20259
Chain-of-Thought
4or
ReAct
5)tobreakdowncomplexgoalsintostepsanddecidewhentothinkversususeatool.Thislayerisalsoresponsibleforgivingagentsthememory
to"remember."
?Deployment(The"BodyandLegs"):Whilebuildinganagentonalaptopiseffectiveforprototyping,productiondeploymentiswhatmakesitareliableandaccessibleservice.
Thisinvolveshostingtheagentonasecure,scalableserverandintegratingitwith
essentialproductionservicesformonitoring,logging,andmanagement.Oncedeployed,theagentcanbeaccessedbyusersthroughagraphicalinterfaceorprogrammaticallybyotheragentsviaanAgent-to-Agent(A2A)API.
Attheendoftheday,buildingagenerativeAIagentisanewwaytodevelopsolutionsto
solvetasks.Thetraditionaldeveloperactsasa"bricklayer,"preciselydefiningeverylogicalstep.Theagentdeveloper,incontrast,ismorelikeadirector.Insteadofwritingexplicitcodeforeveryaction,yousetthescene(theguidinginstructionsandprompts),selectthecast
(thetoolsandAPIs),andprovidethenecessarycontext(thedata).Theprimarytaskbecomesguidingthisautonomous"actor"todelivertheintendedperformance.
You'llquicklyfindthatanLM'sgreateststrength—itsincredibleflexibility—isalsoyourbiggestheadache.Alargelanguagemodel'scapacitytodoanythingmakesitdifficulttocompelittodoonespecificthingreliablyandperfectly.Whatweusedtocall“promptengineering”andnowcall“contextengineering”guidesLMstogeneratethedesiredoutput.Foranysingle
calltoaLM,weinputourinstructions,facts,availabletoolstocall,examples,sessionhistory,userprofile,etc–fillingthecontextwindowwithjusttherightinformationtogettheoutputsweneed.AgentsaresoftwarewhichmanagetheinputsofLMstogetworkdone.
Debuggingbecomesessentialwhenissuesarise."AgentOps"essentiallyredefinesthe
familiarcycleofmeasurement,analysis,andsystemoptimization.Throughtracesandlogs,youcanmonitortheagent's"thoughtprocess"toidentifydeviationsfromtheintended
executionpath.Asmodelsevolveandframeworksimprove,thedeveloper'sroleistofurnish
IntroductiontoAgentsandAgentarchitectures
November202510
criticalcomponents:domainexpertise,adefinedpersonality,andseamlessintegration
withthetoolsnecessaryforpracticaltaskcompletion.It'scrucialtorememberthat
comprehensiveevaluationsandassessmentsoftenoutweightheinitialprompt'sinfluence.
Whenanagentispreciselyconfiguredwithclearinstructions,reliabletools,andan
integratedcontextservingasmemory,agreatuserinterface,theabilitytoplanandproblemsolve,andgeneralworldknowledge,ittranscendsthenotionofmere"workflowautomation."Itbeginstofunctionasacollaborativeentity:ahighlyefficient,uniquelyadaptable,and
remarkablycapablenewmemberofyourteam.
Inessence,anagentisasystemdedicatedtotheartofcontextwindowcuration.It
isarelentlessloopofassemblingcontext,promptingthemodel,observingtheresult,
andthenre-assemblingacontextforthenextstep.Thecontextmayincludesystem
instructions,userinput,sessionhistory,longtermmemories,groundingknowledgefromauthoritativesources,whattoolscouldbeused,andtheresultsoftoolsalreadyinvoked.Thissophisticatedmanagementofthemodel'sattentionallowsitsreasoningcapabilitiestoproblemsolvefornovelcircumstancesandaccomplishobjectives.
TheAgenticProblem-SolvingProcess
WehavedefinedanAIagentasacomplete,goal-orientedapplicationthatintegratesareasoningmodel,actionabletools,andagoverningorchestrationlayer.Ashortversionis“LMsinaloopwithtoolstoaccomplishanobjective.”
Buthowdoesthissystemactuallywork?Whatdoesanagentdofromthemomentitreceivesarequesttothemomentitdeliversaresult?
IntroductiontoAgentsandAgentarchitectures
November202511
Atitscore,anagentoperatesonacontinuous,cyclicalprocesstoachieveitsobjectives.
Whilethisloopcanbecomehighlycomplex,itcanbebrokendownintofivefundamentalstepsasdiscussedindetailinthebookAgenticSystemDesign:6
1.GettheMission:Theprocessisinitiatedbyaspecific,high-levelgoal.Thismissionisprovidedbyauser(e.g.,"Organizemyteam'stravelfortheupcomingconference")oranautomatedtrigger(e.g.,"Anewhigh-prioritycustomertickethasarrived").
2.ScantheScene:Theagentperceivesitsenvironmenttogathercontext.Thisinvolvestheorchestrationlayeraccessingitsavailableresources:"Whatdoestheuser'srequestsay?","Whatinformationisinmytermmemory?DidIalreadytrytodothistask?Didtheusergivemeguidancelastweek?","WhatcanIaccessfrommytools,likecalendars,
databases,orAPIs?"
3.ThinkItThrough:Thisistheagent'score"think"loop,drivenbythereasoningmodel.TheagentanalyzestheMission(Step1)againsttheScene(Step2)anddevisesaplan.This
isn'tasinglethought,butoftenachainofreasoning:"Tobooktravel,Ifirstneedtoknowwhoisontheteam.Iwillusetheget_team_rostertool.ThenIwillneedtochecktheiravailabilityviathecalendar_api."
4.TakeAction:Theorchestrationlayerexecutesthefirstconcretestepoftheplan.Itselectsandinvokestheappropriatetool—callinganAPI,runningacodefunction,orqueryingadatabase.Thisistheagentactingontheworldbeyonditsown
internalreasoning.
5.ObserveandIterate:Theagentobservestheoutcomeofitsaction.Theget_
team_rostertoolreturnsalistoffivenames.Thisnewinformationisaddedtotheagent'scontextor"memory."Theloopthenrepeats,returningtoStep3:"NowthatIhavetheroster,mynextstepistocheckthecalendarforthesefivepeople.Iwillusethecalendar_api."
IntroductiontoAgentsandAgentarchitectures
November202512
This"Think,Act,Observe"cyclecontinues-managedbytheOrchestrationLayer,reasonedbytheModel,andexecutedbytheToolsuntiltheagent'sinternalplaniscompleteandtheinitialMissionisachieved.
Figure1:AgenticAIproblem-solvingprocess
Let’stakeareal-worldexampleofhowaCustomerSupportAgentwouldoperateinthis5-stepcycle:
Imagineauserasks,"Whereismyorder#12345?"
IntroductiontoAgentsandAgentarchitectures
November202513
Insteadofimmediatelyacting,theagentfirstentersits"ThinkItThrough"phasetodeviseacompletestrategy.Itreasons:
"Theuserwantsadeliverystatus.Toprovideacompleteanswer/lneedamulti–stepplan:
1.Identify:lmustfirstfindtheorderinourinternaldatabasetoconfirmitexistsandgetitsdetails.
2.Track:Fromthosedetails/lIllneedtoextracttheshippingcarrierIstrackingnumber.Then/lIllquerytheexternalcarrierIsAPlforthelivestatus.
3.Report:Finally/lmustsynthesizetheinformationlIvegatheredintoaclear/helpfulresponsefortheuser."
Withthismulti-stepplaninmind,theagentbeginsexecution.
Initsfirst"Act"phase,itexecutessteponeofitsplan,callingthefind_order("12345")tool.Itobservestheresult—afullorderrecord,includingthetrackingnumber"ZYX987."
Theagent'sorchestrationlayerrecognizesthatthefirstpartofitsplaniscompleteandimmediatelyproceedstothesecond.Itactsbycallingtheget_shipping_
status("ZYX987")tool.Itobservesthenewresult:"OutforDelivery."
Finally,havingsuccessfullyexecutedthedata-gatheringstagesofitsplan,theagent
movestothe"Report"step.Itperceivesithasallthenecessarycomponents,plansthefinalmessage,andactsbygeneratingtheresponse:"Yourorder#12345is'OutforDelivery'!
IntroductiontoAgentsandAgentarchitectures
November202514
ATaxonomyofAgenticSystems
Understandingthe5-stepoperationalloopisthefirstpartofthepuzzle.Thesecondis
recognizingthatthisloopcanbescaledincomplexitytocreatedifferentclassesofagents.Foranarchitectorproductleader,akeyinitialdecisionisscopingwhatkindofagenttobuild.
Wecanclassifyagenticsystemsintoafewbroadlevels,eachbuildingonthecapabilitiesofthelast.
Figure2:Agenticsystemin5steps
IntroductiontoAgentsandAgentarchitectures
November202515
Level0:TheCoreReasoningSystem
Beforewecanhaveanagent,wemuststartwiththe"Brain"initsmostbasicform:the
reasoningengineitself.Inthisconfiguration,aLanguageModel(LM)operatesinisolation,respondingsolelybasedonitsvastpre-trainedknowledgewithoutanytools,memory,orinteractionwiththeliveenvironment.
Itsstrengthliesinthisextensivetraining,allowingittoexplainestablishedconceptsandplanhowtoapproachsolvingaproblemwithgreatdepth.Thetrade-offisacompletelackofreal-timeawareness;itisfunctionally"blind"toanyeventorfactoutsideitstrainingdata.
Forinstance,itcanexplaintherulesofprofessionalbaseballandthecompletehistoryoftheNewYorkYankees.Butifyouask,"WhatwasthefinalscoreoftheYankeesgamelastnight?",itwouldbeunabletoanswer.Thatgameisaspecific,real-worldeventthathappenedafteritstrainingdatawascollected,sotheinformationsimplydoesn'texistinitsknowledge.
Level1:TheConnectedProblem-Solver
Atthislevel,thereasoningenginebecomesafunctionalagentbyconnectingtoandutilizingexternaltools-the"Hands"componentofourarchitecture.Itsproblem-solvingisnolongerconfinedtoitsstatic,pre-trainedknowledge.
Usingthe5-steploop,theagentcannowanswerourpreviousquestion.Giventhe"Mission":"WhatwasthefinalscoreoftheYankeesgamelastnight?",its"Think"steprecognizesthisasareal-timedataneed.Its"Act"steptheninvokesatool,likeaGoogleSearchAPIwiththeproperdateandsearchterms.It"Observes"thesearchresult(e.g.,"Yankeeswon5-3"),andsynthesizesthatfactintoafinalanswer.
IntroductiontoAgentsandAgentarchitectures
November202516
Thisfundamentalabilitytointeractwiththeworld-whetherusingasearchtoolforascore,afinancialAPIforalivestockprice,oradatabaseviaRetrieval-AugmentedGeneration(RAG)isthecorecapabilityofaLevel1agent.
Level2:TheStrategicProblem-Solver
Level2marksasignificantexpansionincapability,movingfromexecutingsimpletaskstostrategicallyplanningcomplex,multi-partgoals.Thekeyskillthatemergeshereiscontextengineering:theagent'sabilitytoactivelyselect,package,andmanagethemostrelevantinformationforeachstepofitsplan.
Anagent'saccuracydependsonafocused,high-qualitycontext.Contextengineering
curatesthemodel'slimitedattentiontopreventoverloadandensureefficientperformance.
Forinstance,considerthe"Mission":"Findagoodcoffeeshophalfwaybetweenmyofficeat1600AmphitheatreParkway,MountainView,andmyclient'sofficeat1MarketSt,
SanFrancisco."
ALevel2agentwillstartcreatingaplan:
1.Think:"Imustfirstfindthehalfwaypoint."
?Act:CalltheMapstoolwithbothaddresses.
?Observe:"ThehalfwaypointisMillbrae,CA."
2.Think:"NowImustfindcoffeeshopsinMillbrae.Theuseraskedfor'good'ones,soIwillsearchforplaceswitha4-starratingorhigher."
IntroductiontoAgentsandAgentarchitectures
November202517
?Act:Callthegoogle_placestoolwithquery="coffeeshopinMillbrae,CA",min_rating=4.0.(Thisiscontextengineering-itautomaticallycreatedanew,focusedsearchqueryfromthepreviousstep'soutput).
?Observe:"Thesearchreturns'MillbraeCoffee'and'TheDailyGrind'."
3.Think:"Iwillsynthesizetheseresultsandpresentthemtotheuser."
Thisstrategicplanningalsoenablesproactiveassistance,likeanagentthatreadsalong
flightconfirmationemail,engineersthekeycontext(flightnumber,date),andactsbyaddingittoyourcalendar.
Level3:TheCollaborativeMulti-AgentSystem
Atthehighestlevel,theparadigmshiftsentirely.Wemoveawayfrombuildingasingle,all-powerful"super-agent"andtowarda"teamofspecialists"workinginconcert,amodelthatdirectlymirrorsahumanorganization.Thesystem'scollectivestrengthliesinthisdivisionoflabor.
Here,agentstreatotheragentsastools.Imaginea"ProjectManager"agentreceivinga"Mission":"Launchournew'Solaris'headphones."
TheProjectManageragentdoesn'tdotheentireworkitself.ItActsbycreatingnewMissionsforitsteamofspecializedagentsmuchlikehowitworksinthereallife:
1.DelegatestoMarketResearchAgent:"Analyzecompetitorpricingfornoise-cancelingheadphones.Returnasummarydocumentbytomorrow."
2.DelegatestoMarketingAgent:"Draftthreeversionsofapressreleaseusingthe'Solaris'productspecsheetascontext."
IntroductiontoAgentsandAgentarchitectures
November202518
3.DelegatestoWebDevAgent:"GeneratethenewproductpageHTMLbasedontheattacheddesignmockups."
Thiscollaborativemodel,whilecurrentlyconstrainedbythereasoninglimitationsoftoday'sLMs,representsthefrontierofautomatingentire,complexbusinessworkflowsfromstarttofinish.
Level4:TheSelf-EvolvingSystem
Level4representsaprofoundleapfromdelegationtoautonomouscreationandadaptation.Atthislevel,anagenticsystemcanidentifygapsinitsowncapabilitiesanddynamically
createnewtoolsorevennewagentstofillthem.Itmovesfromusingafixedsetofresourcestoactivelyexpandingthem.
Followingourexample,the"ProjectManager"agent,taskedwiththe'Solaris'launch,mightrealizeitneedstomonitorsocialmediasentiment,butnosuchtooloragentexistson
itsteam.
1.Think(Meta-Reasoning):"Imusttracksocialmediabuzzfor'Solaris,'butIlackthecapability."
2.Act(AutonomousCreation):Insteadoffailing,itinvokesahigh-levelAgentCreatortoolwithanewmission:"Buildanewagentthatmonitorssocialmediaforkeywords'Solarisheadphones',performssentimentanalysis,andreportsadailysummary."
3.Observe:Anew,specializedSentimentAnalysisAgentiscreated,tested,andaddedtotheteamonthefly,readytocontributetotheoriginalmission.
Thislevelofautonomy,whereasystemcandynamicallyexpanditsowncapabilities,turnsateamofagentsintoatrulylearningandevolvingorganization.
IntroductiontoAgentsandAgentarchitectures
November202519
CoreAgentArchitecture:Model,Tools,andOrchestration
Weknowwhatanagentdoesandhowitcanscale.Buthowdoweactuallybuildit?
Thetransitionfromconcepttocodeliesinthespecificarchitecturaldesignofitsthreecorecomponents.
Model:The“Brain”ofyourAIAgent
TheLMisthereasoningcoreofyouragent,anditsselectionisacriticalarchitecturaldecisionthatdictatesyouragent'scognitivecapabilities,operationalcost,andspeed.
However,treatingthischoiceasasimplematterofpickingthemodelwiththehighestbenchmarkscoreisacommonpathtofailure.Anagent'ssuccessinaproduction
environmentisrarelydeterminedbygenericacademicbenchmarks.
Real-worldsuccessdemandsamodelthatexcelsatagenticfundamentals:superior
reasoningtonavigatecomplex,multi-stepproblemsandreliabletoolusetointeractwiththe
world
7.
Todothiswell,startbydefiningthebusinessproblem,thentestmodelsagainstmetricsthatdirectlymaptothatoutcome.Ifyouragentneedstowritecode,testitonyourprivatecodebase.Ifitprocessesinsuranceclaims,evaluateitsabilitytoextractinformation
fromyourspecificdocumentformats.Thisanalysismustthenbecross-referencedwiththepracticalitiesofcostandlatency.The"best"modelistheonethatsitsattheoptimalintersectionofquality,speed,andpriceforyour
specifictask
8.
IntroductiontoAgentsandAgentarchitectures
November202520
Youmaychoosemorethanonemodel,a"teamofspecialists."Youdon'tuseasledgehammertocrackanut.ArobustagentarchitecturemightuseafrontiermodellikeGemini2.5Profortheheavyliftingofinitialplanningandcomplexreasoning,butthenintelligentlyroutesimpler,high-volumetasks—likeclassifyinguserintentorsummarizingtext—toamuchfasterand
morecost-effectivemodellikeGemini2.5Flash.Modelroutingmightbeautomaticorhard-codedbutisakeystrategyforoptimizingboth
performanceandcost
9.
Thesameprincipleappliestohandlingdiversedatatypes.Whileanativelymultimodal
modellike
Geminilivemode
10offersastreamlinedpathtoprocessingimagesandaudio,
analternativeistousespecializedtoolslikethe
CloudVisionAPI
11or
Speech-to-TextAPI
12.Inthispattern,theworldisfirstconvertedtotext,whichisthenpassedtoalanguage-onlymodelforreasoning.Thisaddsflexibilityandallowsforbest-of-breedcomponents,butalsointroducessignificantcomplexity.
Finally,theAIlandscapeisinastateofconstant,rapidevolution.Themodelyouchoosetodaywillbesupersededinsixmonths.A"setitandforgetit"mindsetisunsustainable.
Buildingforthisrealitymeansinvestinginanimbleoperationalframework—an"AgentOps"
practice
13.WitharobustCI/CDpipelinethatcontinuouslyevaluatesnewmodelsagainsty
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 區(qū)塊鏈技術(shù)實施規(guī)范與方案
- 在線教育市場需求與供應(yīng)分析
- 2026年工程造價師進修指南工程估價題集及解析
- 2026年金融行業(yè)風(fēng)險評估模擬試題
- 2026年金融理財規(guī)劃師資產(chǎn)配置與風(fēng)險控制試題
- 2026年建筑工程設(shè)計技能認(rèn)證題庫
- 2026年軟件工程師面試題集編程語言與數(shù)據(jù)結(jié)構(gòu)題庫
- 2026年酒店服務(wù)管理與禮儀規(guī)范試題解析
- 2026年高級經(jīng)濟師宏觀經(jīng)濟學(xué)實務(wù)操作題集
- 2026年生物技術(shù)競賽分子生物學(xué)基礎(chǔ)實驗操作技術(shù)評估
- 2026年無錫工藝職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試題庫帶答案解析
- 【低空經(jīng)濟】無人機AI巡檢系統(tǒng)設(shè)計方案
- 滬教版6年級上冊數(shù)學(xué)提高必刷題(有難度) (解析)
- DBJ50-T-086-2016重慶市城市橋梁工程施工質(zhì)量驗收規(guī)范
- 固態(tài)電池及固態(tài)電池的制造方法培訓(xùn)課件
- 川農(nóng)畢業(yè)論文開題報告
- UL1012標(biāo)準(zhǔn)中文版-2018非二類變壓器UL中文版標(biāo)準(zhǔn)
- 出納常用表格大全
- 《頭暈與眩暈診斷》課件
- 2022年江蘇職教高考市場營銷試卷
- 計量器具-GRR分析表格
評論
0/150
提交評論