版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京第五中學中考數(shù)學期末幾何綜合壓軸題易錯匯編一、中考數(shù)學幾何綜合壓軸題1.(操作)如圖①,在矩形中,為對角線上一點(不與點重合),將沿射線方向平移到的位置,的對應(yīng)點為.已知(不需要證明).(探究)過圖①中的點作交延長線于點,連接,其它條件不變,如圖②.求證:.(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當最短時,若,,直接寫出的長和此時四邊形的周長.解析:探究:見解析;拓展:四邊形的周長為【分析】探究:證明四邊形EGBC是平行四邊形,推出EG=BC,利用SAS證明三角形全等即可.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.由題意四邊形AGFC是平行四邊形,推出GF=AC=,由BF=BF′,可以假設(shè)BF=x,則BG=利用相似三角形的性質(zhì),求出BH,HF′,利用勾股定理求出GF′,再利用二次函數(shù)的性質(zhì),求出GF′的值最小時BF′的值,推出BF′=此時點F′與O重合,由此即可解決問題.【詳解】解:探究:由平移,∴,即又∵,∴四邊形為平行四邊形∴∵,∴∠CBF=∠ACB,∵∴∠AEG=∠ACB,∴∠AEG=∠CBF∴.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.∵四邊形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴∵∴,∴由題意四邊形AGFC是平行四邊形,∴GF=AC=,∵BF=BF′,可以假設(shè)BF=x,則BG=∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴∴∴∴∵>0,∴當時,GF′的值最小,此時點F′與O重合,由對折得:由矩形的性質(zhì)得:四邊形BFCF′是菱形,四邊形BFCF′的周長為,且與互相平分,由勾股定理得:【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),翻折變換,平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.2.如圖1,在正方形中,點分別在邊上,且,延長到點G,使得,連接.(特例感知)(1)圖1中與的數(shù)量關(guān)系是______________.(結(jié)論探索)(2)圖2,將圖1中的繞著點A逆時針旋轉(zhuǎn),連接并延長到點G,使得,連接,此時與還存在(1)中的數(shù)量關(guān)系嗎?判斷并說明理由.(拓展應(yīng)用)(3)在(2)的條件下,若,當是以為直角邊的直角三角形時,請直接寫出的長.解析:(1)=,(2)存在,證明見解析,(3)或或16或4.【分析】(1)連接GC,證△CDG≌△CBE,得出△GCE為等腰直角三角形即可;(2)類似(1)的方法,先證△AFD≌△AEB,再證△CDG≌△CBE,得出△GCE為等腰直角三角形即可;(3)根據(jù)E、F是直角頂點分類討論,結(jié)合(2)中結(jié)論,利用勾股定理求解即可.【詳解】解:(1)連接GC,∵AE=AF,AD=AB,∴DF=BE,∵,∴DG=BE,∵∠GDC=∠B=90°,DC=BC,∴△CDG≌△CBE,∴CE=CG,∠GCD=∠ECB,∵∠ECB+∠DCE=90°,∴∠GCE=∠GCD+∠DCE=90°,∴=;故答案為:=;(2)存在,連接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,與(1)同理,=;(3)當∠FEG=90°時,如圖1,因為∠FEA=∠GEC=45°,所以,A、E、C在一條直線上,∵AB=5,∴AC=5,CE=5-3=2,GE=EC=4;如圖2,E在CA延長線上,同理可得,EC=8,GE=EC=16;當∠EFG=90°時,如圖3,∠AFD=∠EFG+∠AFE=135°,由(2)得,∠AFD=∠AEB=135°,DF=BE,所以,B、E、F在一條直線上,作AM⊥EF,垂足為M,∵,∴EF=6,AM=ME=MF=3,,BE=DF=1,FG=2,;如圖4,同圖3,BE=DF=7,F(xiàn)G=14,EF=6,,綜上,的長為或或16或4.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理和等腰直角三角形的性質(zhì),解題關(guān)鍵是恰當?shù)倪B接輔助線,構(gòu)造全等三角形;會分類討論,結(jié)合題目前后聯(lián)系,解決問題.3.問題呈現(xiàn):如圖1,在邊長為1的正方形網(wǎng)格中,分別連接格點A,B和C,D,AB和CD相交于點P,求tan∠BPD的值.方法歸納:利用網(wǎng)格將線段CD平移到線段BE,連接AE,得到格點△ABE,且AE⊥BE,則∠BPD就變換成Rt△ABE中的∠ABE.問題解決:(1)圖1中tan∠BPD的值為________;(2)如圖2,在邊長為1的正方形網(wǎng)格中,分別連接格點A,B和C,D,AB與CD交于點P,求cos∠BPD的值;思維拓展:(3)如圖3,AB⊥CD,垂足為B,且AB=4BC,BD=2BC,點E在AB上,且AE=BC,連接AD交CE的延長線于點P,利用網(wǎng)格求sin∠CPD.解析:(1)2;(2);(3)【分析】(1)由題意可得BE∥DC,則∠ABE=∠DPB,那么∠BPD就變換到Rt△ABE中,由銳角三角函數(shù)的定義可得出答案;(2)過點A作AE//CD,連接BE,那么∠BPD就變換到等腰Rt△ABE中,由銳角三角函數(shù)的定義可得出答案;(3)以BC為邊長構(gòu)造網(wǎng)格,然后把PC平移到AN,則∠CPD就變換成Rt△ADN中的∠NAD,再由銳角三角函數(shù)的定義可得出答案.【詳解】(1)由勾股定理可得:,∵CD//BE,∴tan∠BPD=tan∠ABE=;(2)過點A作AE//CD,連接BE,由圖可知E點在格點上,且∠AEB=90°,由勾股定理可得:∴cos∠BPD=cos∠BAE=(3)如圖3構(gòu)造網(wǎng)格,過點A作AN//PC,連接DN,由圖可知N點在格點上,且∠AND=90°,由勾股定理可得:∴sin∠CPD=sin∠NAD=【點睛】本題考查三角形綜合題、平行線的性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的思想解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題.4.(基礎(chǔ)鞏固)(1)如圖1,在中,M是的中點,過B作,交的延長線于點D.求證:;(嘗試應(yīng)用)(2)在(1)的情況下載線段上取點E(如圖2),已知,,,求;(拓展提高)(3)如圖3,菱形中,點P在對角線上,且,點E為線段上一點,.若,,求菱形的邊長.解析:(1)證明見解析;(2);(3).【分析】(1)證明,即可求解;(2)過點B作于點H,得到,進而求解;(3)延長交于G,交延長線于F,連結(jié),可得,所以,設(shè)菱形邊長為,進而可得出結(jié)論.【詳解】解:(1)證明:,,,是的中點,,,.(2)由(1)得,,作,垂足為H,如圖所示:,在中,,.(3)延長交于G,交延長線于F,連結(jié),如圖所示:過作于由,,設(shè)菱形邊長為,在和中,即,解得(舍負),菱形的邊長為.【點睛】本題考查四邊形綜合題,主要考查了菱形的性質(zhì)、相似三角形的判定與性質(zhì),解直角三角形、勾股定理的運用,正確作出輔助線是解題的關(guān)鍵.5.定義:有一組對角互補的四邊形叫做“對補四邊形”,例如,四邊形中,若或,則四邊形是“對補四邊形”.(概念理解)(1)如圖1,四邊形是“對補四邊形”.①若,則________;②若.且時.則_______;(拓展提升)(2)如圖,四邊形是“對補四邊形”,當,且時,圖中之間的數(shù)量關(guān)系是,并證明這種關(guān)系;(類比應(yīng)用)(3)如圖3,在四邊形中,平分;①求證:四邊形是“對補四邊形”;②如圖4,連接,當,且時,求的值.解析:(1)①,②;(2),理由見解析;(3)①見解析,②.【分析】(1)①根據(jù)“對補四邊形”的定義,結(jié)合,即可求得答案;②根據(jù)“對補四邊形”的定義,由,得,再利用勾股定理即可求得答案;(2)延長至點,使得,連接,根據(jù)“對補四邊形”的定義,可證明,繼而證明,從而可得結(jié)論;(3)①過點作于點,于點,則,可證,進而可證四邊形是“對補四邊形”;②設(shè),則根據(jù),再運用建立方程,解方程即可求得.【詳解】(1),設(shè),根據(jù)“對補四邊形”的定義,,即,解得,,,.故答案為:.②如圖1,連接,,,,在中,在中,,,,故答案為:.(2),理由如下:如圖2,延長至點,使得,連接,四邊形是“對補四邊形”,,,,,,,,即,,,,,,,,即,故答案為:.(3)①證明:如圖3,過點作于點,于點,則,平分,,,,,,,與互補,四邊形是“對補四邊形”;②由①可知四邊形是“對補四邊形”,,,,設(shè),則,,,,,,,整理得:,解得:.在中,,.【點睛】本題考查了勾股定理,四邊形內(nèi)角和定理,全等三角形的性質(zhì)與判定,解一元二次方程,三角函數(shù)的定義等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì),準確理解新定義是解題的關(guān)鍵.6.平面上,矩形ABCD與直徑為QP的半圓K如圖擺放,分別延長DA和QP交于點O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針方向形如旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).發(fā)現(xiàn)(1)當α=0°,即初始位置時,點P____直線AB上.(填“在”或“不在”)求當α是多少時,OQ經(jīng)過點B?(2)在OQ旋轉(zhuǎn)過程中.簡要說明α是多少時,點P,A間的距離最???并指出這個最小值:(3)如圖,當點P恰好落在BC邊上時.求α及S陰影.拓展如圖.當線段OQ與CB邊交于點M,與BA邊交于點N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.探究當半圓K與矩形ABCD的邊相切時,求sinα的值.解析:發(fā)現(xiàn):(1)在,15°;(2)當α=60°時,最小距離為1;(3)30°,.拓展:x的范圍是;探究:sinα的值為或或.【詳解】解:發(fā)現(xiàn)(1)在;當OQ過點B時,在Rt△OAB中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(2)如圖3.連AP,有OA+AP≥OP,當OP過點A,即α=60°時等號成立.∴AP≥OP-OA=2-1=1.∴當α=60°時.P,A間的距離最小.∴PA的最小值為1.(3)如圖3,設(shè)半圓K與PC交點為R,連接RK,過點P作PH⊥AD于點H,過點R作RE⊥KQ于點E.在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.由AD//BC知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.,在Rt△RKE中,,,;拓展如圖5,∠OAN=∠MBN=90°,∠ANO=∠BNM,所以△AON∽△BMN.∴,即,∴.如圖4,當點Q落在BC上時,x取最大值,作QF⊥AD于點F..∴x的范圍是.【注:如果考生答“或”均不扣分】探究半圓與矩形相切,分三種情況:①如圖5,半圓K與BC切于點T,設(shè)直線KT與AD和OQ的初始位置所在直線分別交于S,O′,則∠KSO=∠KTB=90°,作KG⊥OO′于點G.Rt△OSK中,.Rt△OSO′中,,.Rt△KGO′中,∠O′=30°,KG=Rt△OGK中,②半圓K與AD切于點T,如圖6,同理可得.③當半圓K與CD相切時,成Q與點D重合,且為切點.∴α=60°,∴.綜上述,sinα的值為或或.考點:圓,直線與圓的位置關(guān)系,銳角三角函數(shù),相似,三角形法則求最值7.探究:如圖1和2,四邊形中,已知,,點,分別在、上,.(1)①如圖1,若、都是直角,把繞點逆時針旋轉(zhuǎn)至,使與重合,則能證得,請寫出推理過程;②如圖2,若、都不是直角,則當與滿足數(shù)量關(guān)系_______時,仍有;(2)拓展:如圖3,在中,,,點、均在邊上,且.若,求的長.解析:(1)①見解析;②,理由見解析;(2)【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)根據(jù)等腰直角三角形性質(zhì)好勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3?x,根據(jù)勾股定理得出方程,求出x即可.【詳解】(1)①如圖1,∵把繞點逆時針旋轉(zhuǎn)至,使與重合,∴,,∵,,∴,∴,即,在和中∴,∴,∵,∴;②,理由是:把繞點旋轉(zhuǎn)到,使和重合,則,,,∵,∴,∴,,在一條直線上,和①知求法類似,,在和中∴,∴,∵,∴;故答案為:(2)∵中,,∴,由勾股定理得:,把繞點旋轉(zhuǎn)到,使和重合,連接.則,,,∵,∴,∴,在和中∴,∴,設(shè),則,∵,∴,∵,,∴,由勾股定理得:,,解得:,即.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學生的分析問題,解決問題的能力要求比較高.8.(1)探究發(fā)現(xiàn):下面是一道例題及解答過程,請補充完整:如圖①在等邊△ABC內(nèi)部,有一點P,若∠APB=150°,求證:AP2+BP2=CP2證明:將△APC繞A點逆時針旋轉(zhuǎn)60°,得到△AP’B,連接PP’,則△APP’為等邊三角形∴∠APP’=60°,PA=PP’,PC=∵∠APB=150°,∴∠BPP’=90°∴P’P2+BP2=,即PA2+PB2=PC2(2)類比延伸:如圖②在等腰△ABC中,∠BAC=90°,內(nèi)部有一點P,若∠APB=135°,試判斷線段PA,PB,PC之間的數(shù)量關(guān)系,并證明.(3)聯(lián)想拓展:如圖③在△ABC中,∠BAC=120°,AB=AC,點P在直線AB上方,且∠APB=60°,滿足(kPA)2+PB2=PC2(其中k>0),請直接寫出k的值.解析:(1)P’B,P’B2;(2)2PA2+PB2=PC2,見解析;(3)k=【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理直接寫出即可.(2)將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP′B,連接PP′,論證PP′=2PA,再根據(jù)勾股定理代換即可.(3)將△APC繞A點順時針旋轉(zhuǎn)120°得到△AP′B,連接PP′,過點A作AH⊥PP′,論證PP′=PA,再根據(jù)勾股定理代換即可.【詳解】(1)PC=P’B,P’P2+BP2=P’B2(2)關(guān)系式為:2PA2+PB2=PC2證明:將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP’B,連接PP’,則△APP’為等腰直角三角形,∴∠APP’=45°,PP’=PA,PC=P’B,∵∠APB=135°,∴∠BPP’=90°,∴P’P2+BP2=P’B2,∴2PA2+PB2=PC2.(3)k=將△APC繞點A順時針旋轉(zhuǎn)120°得到△AP’B,連接PP’,過點A作AH⊥PP’,可得【點睛】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、勾股定理是解題的關(guān)鍵.9.數(shù)學課上,李老師出示了如下框中的題目.在等邊三角形中,點E在上,點D在的延長線上,且,如圖,試確定線段與的大小關(guān)系,并說明理由.小敏與同桌小聰討論后,進行了如下解答:(1)特殊情況,探索結(jié)論當點E為的中點時,如圖1,確定線段與的大小關(guān)系.請你直接寫出結(jié)論:_____(填“>”,“<”或“=”).(2)特例啟發(fā),解答題目解:如圖2,題目中,與的大小關(guān)系是:____(填“>”“<”或“=”).理由如下:(請你完成以下解答過程)(3)拓展結(jié)論,設(shè)計新題在等邊三角形中,點E在直線上,點D在直線上,且.若的邊長為1,,求的長(請你直接寫出結(jié)果).解析:(1)=;(2)=;(3)3或1【分析】(1)根據(jù)等邊三角形性質(zhì)和等腰三角形的性質(zhì)求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)過E作EF∥BC交AC于F,求出等邊三角形AEF,證△DEB和△ECF全等,求出BD=EF即可;(3)當D在CB的延長線上,E在AB的延長線式時,由(2)求出CD=3,當E在BA的延長線上,D在BC的延長線上時,求出CD=1.【詳解】解:(1)如圖1,過點作,交于點,為等邊三角形,,∠A=60°,∴為等邊三角形,,,,,,,在和中,,,,故答案為:;(2)如圖1,過E作EF∥BC交AC于F,∵等邊三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等邊三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD,故答案為:=.(3)CD=1或3,理由是:分為兩種情況:①如圖2過A作AM⊥BC于M,過E作EN⊥BC于N,則AM∥EN,∵△ABC是等邊三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AB=1,AE=2,∴AB=BE=1,∵EN⊥DC,AM⊥BC,∴∠AMB=∠ENB=90°,在△ABM和△EBN中,∴△AMB≌△ENB(AAS),∴BN=BM=,∴CN=1+=,CD=2CN=3;②如圖3,作AM⊥BC于M,過E作EN⊥BC于N,則AM∥EN,∵△ABC是等邊三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴,∴,∴MN=1,∴CN=1-=,∴CD=2CN=1,即CD=3或1.【點睛】本題綜合考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識點的應(yīng)用,解(2)小題的關(guān)鍵是構(gòu)造全等的三角形后求出BD=EF,解(3)小題的關(guān)鍵是確定出有幾種情況,求出每種情況的CD值,注意,不要漏解啊.10.(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______.(2)類比探究如圖2,在和中,,,連接交的延長線于點.請判斷的值及的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,,請直接寫出當點與點在同一條直線上時的長.解析:(1)①1;②;(2),.理由見解析;(3)2或4.【分析】(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;②由△COA≌△DOB,得∠CAO=∠DBO,然后根據(jù)三角形的內(nèi)角和定理先求∠OAB+∠OBA的值,再求∠AMB的值即可;(2)根據(jù)銳角三角比可得,根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,根據(jù)相似撒尿性的性質(zhì)求解即可;(3)當點與點在同一條直線上,有兩種情況:如圖3和圖4,然后根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,可得AD的長.【詳解】(1)①∵,∴∠BOD=∠AOC,又∵,,∴△BOD≌△AOC,∴BD=AC,∴=1;②∵,∴∠OAB+∠OBA=140°,∵△BOD≌△AOC,∴∠CAO=∠DBO,∴∠CAO+∠OAB+∠ABM=∠DBO+∠OAB+∠ABM=∠OAB+∠OBA=140°,∴∠AMB=;(2)如圖2,,.理由如下:中,,,,同理得:,,,,,,∠CAO=∠DBO,∵∠BEO+∠DBO=90°,∴∠CAE+∠AEM=90°,∴∠AMB=90°;(3)∵∠A=30°,,∴OA==3.如圖3,當點D和點A在點O的同側(cè)時,∵,∴AD=3-2=2;如圖4,當點D和點A在點O的兩側(cè)時,∵,,OA=3∴AD=3+1=4.綜上可知,AD的長是2或4.【點睛】本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,相似三角形的判定與性質(zhì),解直角三角形,旋轉(zhuǎn)的性質(zhì),以及分類討論的數(shù)學思想,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運用類比的思想解決問題,本題是一道比較好的題目.11.在中,,,是邊上一點,將沿折疊得到,連接.(1)特例發(fā)現(xiàn):如圖1,當,落在直線上時,①求證:;②填空:的值為______;(2)類比探究:如圖2,當,與邊相交時,在上取一點,使,交于點.探究的值(用含的式子表示),并寫出探究過程;(3)拓展運用:在(2)的條件下,當,是的中點時,若,求的長.解析:(1)①見解析;②1;(2),見解析;(3)【分析】(1)①根據(jù)折疊性質(zhì)證明即可;②當,證明,即可得出的值;(2)延長交于點,根據(jù)折疊性質(zhì)證明,即可得出結(jié)論;(3)由(2)可知,設(shè),則,,,可得,再由勾股定理列方程求解即可.【詳解】解:(1)①證明:延長交于點.由折疊得.∴.∵,∴.②當,即時,可知AC=BC,在和中,,∴(AAS),∴,∴.故答案為:1;(2)解:.理由:延長交于點,由折疊得.∴,∵,∴,∵,∴,∴.(3)解:由折疊得,,∵是的中點,∴,∴,,,由(2)知,∴,,是的中點,∴,∴,設(shè),則,,,∴,∴,∴,,∴,在中,由勾股定理得,∵,∴,解得(負值舍去),∴.【點睛】本題為三角形綜合題,考查折疊的性質(zhì),全等三角形判定與性質(zhì),相似三角形的判定及性質(zhì),勾股定理等知識點,根據(jù)折疊性質(zhì)找到角度之間的關(guān)系是解題的關(guān)鍵.12.如圖1,在中,,,,點D,E分別是邊,的中點,連接.將繞點C按逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當時,;②當時,;(2)拓展探究試判斷:當時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決當旋轉(zhuǎn)至時,請直接寫出的長.解析:(1)①;②;(2)不變,證明見解析;(3)2或2【分析】(1)①當=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出BD、AE的比值;②中,圖形如下,與①有所變化,但求解方法完全相同;(2)證明△ECA∽△DCB,從而根據(jù)邊長成比例得出比值;(3)存在2種情況,一種是當時,;另一種是當時,,分別利用勾股定理可求得.【詳解】(1)①∵在中,,,,點D,E分別是邊,的中點∴CD=BD=2,在Rt△ABC中,AB=,AC=∴AE=∴;②圖形如下:同理可知:BC=4,AC=,DC=2,DE=,CE=∴BD=DC+CB=2+4=6,AE=EC+AC==∴;(2)不變,理由如下∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴;(3)情況一:當時,,圖形如下,過點D作BC的垂線,交BC延長線于點F∵ED∥AC,∴∠ACD=∠EDC=90°∵∠ACB=∠ECD=30°∴∠ECF=30°,∴∠FCD=60°∵CD=2∴在Rt△DCF中,CF=1,F(xiàn)D=∴FB=FC=CB=1+4=5∴在Rt△FDB中,DB=2;情況二:當時,,圖形如下,過點D作BC的垂線,交BC于點F∵DE∥AC,∴∠ACD=90°∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt△CDF中,CF=1,DF=∴FB=CB-CF=4-1=3∴在Rt△FDB中,DB=2綜上得:DB的長為2或2.【點睛】此題屬于旋轉(zhuǎn)的綜合題.考查了旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.13.(探究函數(shù)y=x+的圖象與性質(zhì))(1)函數(shù)y=x+的自變量x的取值范圍是;(2)下列四個函數(shù)圖象中函數(shù)y=x+的圖象大致是;(3)對于函數(shù)y=x+,求當x>0時,y的取值范圍.請將下列的求解過程補充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展運用](4)若函數(shù)y=,則y的取值范圍.解析:(1)x≠0;(2)C(3)4;4;(4)y≥13【解析】試題分析:根據(jù)反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì);二次函數(shù)的性質(zhì)解答即可.試題解析:(1)函數(shù)y=x+的自變量x的取值范圍是x≠0;(2)函數(shù)y=x+的圖象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4.(4)y==x+﹣5═()2+()2﹣5=(+)2+13∵(﹣)2≥0,∴y≥13.考點:1.反比例函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);二次函數(shù)的性質(zhì).14.(1)(探究發(fā)現(xiàn))如圖1,的頂點在正方形兩條對角線的交點處,,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,的兩邊分別與正方形的邊和交于點和點(點與點,不重合).則之間滿足的數(shù)量關(guān)系是.(2)(類比應(yīng)用)如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當時,上述結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請猜想結(jié)論并說明理由.(3)(拓展延伸)如圖3,,,,平分,,且,點是上一點,,求的長.解析:(1)(2)結(jié)論不成立.(3)【分析】(1)結(jié)論:.根據(jù)正方形性質(zhì),證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(2)結(jié)論不成立..連接,在上截取,連接.根據(jù)菱形性質(zhì),證,四點共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質(zhì)證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(3)由可知是鈍角三角形,,作于,設(shè).根據(jù)勾股定理,可得到,由,得四點共圓,再證是等邊三角形,由(2)可知:,故可得.【詳解】(1)如圖1中,結(jié)論:.理由如下:∵四邊形是正方形,∴,,,∵,∴,∴,∴,∴.故答案為.(2)如圖2中,結(jié)論不成立..理由:連接,在上截取,連接.∵四邊形是菱形,,∴,∵,∴四點共圓,∴,∵,∴是等邊三角形,∴,,∵,,∴是等邊三角形,∴,,∴,∴,∴,∴,(3)如圖3中,由可知是鈍角三角形,,作于,設(shè).在中,,∵,∴,解得(舍棄)或,∴,∵,∴四點共圓,∵平分,∴,∴,∵,∴是等邊三角形,由(2)可知:,∴.【點睛】考核知識點:正方形性質(zhì),全等三角形判定和性質(zhì),等邊三角形判定和性質(zhì),圓的性質(zhì).綜合運用各個幾何性質(zhì)定理是關(guān)鍵;此題比較綜合.15.如圖,四邊形是正方形,點為對角線的中點.(1)問題解決:如圖①,連接,分別取,的中點,,連接,則與的數(shù)量關(guān)系是_____,位置關(guān)系是____;(2)問題探究:如圖②,是將圖①中的繞點按順時針方向旋轉(zhuǎn)得到的三角形,連接,點,分別為,的中點,連接,.判斷的形狀,并證明你的結(jié)論;(3)拓展延伸:如圖③,是將圖①中的繞點按逆時針方向旋轉(zhuǎn)得到的三角形,連接,點,分別為,的中點,連接,.若正方形的邊長為1,求的面積.解析:(1),;(2)的形狀是等腰直角三角形,理由見解析;(3)【分析】(1)根據(jù)題意可得PQ為△BOC的中位線,再根據(jù)中位線的性質(zhì)即可求解;(2)連接并延長交于點,根據(jù)題意證出,為等腰直角三角形,也為等腰直角三角形,由且可得是等腰直角三角形;(3)延長交邊于點,連接,.證出四邊形是矩形,為等腰直角三角形,,再證出為等腰直角三角形,根據(jù)圖形的性質(zhì)和勾股定理求出O′A,O′B和BQ的長度,即可計算出的面積.【詳解】解:(1)∵點P和點Q分別為,的中點,∴PQ為△BOC的中位線,∵四邊形是正方形,∴AC⊥BO,∴,;故答案為:,;(2)的形狀是等腰直角三角形.理由如下:連接并延長交于點,由正方形的性質(zhì)及旋轉(zhuǎn)可得,∠,是等腰直角三角形,,.∴,.又∵點是的中點,∴.∴.∴,.∴,∴.∴為等腰直角三角形.∴,.∴也為等腰直角三角形.又∵點為的中點,∴,且.∴的形狀是等腰直角三角形.(3)延長交邊于點,連接,.∵四邊形是正方形,是對角線,∴.由旋轉(zhuǎn)得,四邊形是矩形,∴,.∴為等腰直角三角形.∵點是的中點,∴,,.∴.∴,.∴.∴.∴為等腰直角三角形.∵是的中點,∴,.∵,∴,,∴.∴.【點睛】本題考查正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、旋轉(zhuǎn)圖形的性質(zhì)、三角形中位線定理、全等三角形的判定與性質(zhì)和勾股定理,根據(jù)題意作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.16.(1)(閱讀與證明)如圖1,在正的外角內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.①完成證明:點E是點C關(guān)于的對稱點,,,.正中,,,,得.在中,,______.在中,,______.②求證:.(2)(類比與探究)把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:①______;②線段、、之間存在數(shù)量關(guān)系___________.(3)(歸納與拓展)如圖3,點A在射線上,,,在內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.則線段、、之間的數(shù)量關(guān)系為__________.解析:(1)①60°,30°;②證明見解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根據(jù)等量代換和直角三角形的性質(zhì)即可確定答案;②在FB上取AN=AF,連接AN.先證明△AFN是等邊三角形,得到∠BAN=∠2=∠1,然后再證明△ABN≌△AEF,然后利用全等三角形的性質(zhì)以及線段的和差即可證明;(2)類比(1)的方法即可作答;(3)根據(jù)(1)(2)的結(jié)論,即可總結(jié)出答案.【詳解】解:(1)①∵,,∴,即60°;∵∴故答案為60°,30°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=60°∴△AFN是等邊三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①點E是點C關(guān)于的對稱點,,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案為45°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:當∠BAC=60°時BF=AF+2FG=;由(2)得:當∠BAC=90°時BF=AF+2FG=;以此類推,當當∠BAC=60°時,.【點睛】本題考查了軸對稱的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)的應(yīng)用,靈活應(yīng)用所學知識是解答本題的關(guān)鍵.17.某數(shù)學課外活動小組在學習了勾股定理之后,針對圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積,,之間的關(guān)系問題”進行了以下探究:類比探究(1)如圖2,在中,為斜邊,分別以為斜邊向外側(cè)作,,,若,則面積,,之間的關(guān)系式為;推廣驗證(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作任意,,,滿足,,則(1)中所得關(guān)系式是否仍然成立?若成立,請證明你的結(jié)論;若不成立,請說明理由;拓展應(yīng)用(3)如圖4,在五邊形中,,,,,點在上,,,求五邊形的面積.解析:(1);(2)結(jié)論成立,證明看解析;(3)【分析】(1)由題目已知△ABD、△ACE、△BCF、△ABC均為直角三角形,又因為,則有∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,找到從而找到面積之間的關(guān)系;(2)在△ABD、△ACE、△BCF中,,,可以得到∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,從而找到面積之間的關(guān)系;(3)將不規(guī)則四邊形借助輔助線轉(zhuǎn)換為熟悉的三角形,過點A作AHBP于點H,連接PD,BD,由此可知,,即可計算出,根據(jù)△ABP∽△EDP∽△CBD,從而有,由(2)結(jié)論有,最后即可計算出四邊形ABCD的面積.【詳解】(1)∵△ABC是直角三角形,∴,∵△ABD、△ACE、△BCF均為直角三角形,且,∴∽∽,∴,,∴∴得證.(2)成立,理由如下:∵△ABC是直角三角形,∴,∵在△ABD、△ACE、△BCF中,,,∴∽∽,∴,,∴∴得證.(3)過點A作AHBP于點H,連接PD,BD,∵,,∴,,∵,∴,∴PH=AH=,∴,,∴,∵,ED=2,∴,,∴,∵,∴△ABP∽△EDP,∴,,∴,,∴,,∵,∴∵,∴∵∴△ABP∽△EDP∽△CBD∴故最后答案為.【點睛】(1)(2)主要考查了相似三角形的性質(zhì),若兩三角形相似,則有面積的比值為邊長的平方,根據(jù)此性質(zhì)找到面積與邊長的關(guān)系即可;(3)主要考查了不規(guī)則四邊形面積的計算以及(2)的結(jié)論,其中合理正確利用前面得出的結(jié)論是解題的關(guān)鍵.18.如圖1,已知,,點D在上,連接并延長交于點F,(1)猜想:線段與的數(shù)量關(guān)系為_____;(2)探究:若將圖1的繞點B順時針方向旋轉(zhuǎn),當小于時,得到圖2,連接并延長交于點F,則(1)中的結(jié)論是否還成立?若成立,請證明;若不成立,請說明理由;(3)拓展:圖1中,過點E作,垂足為點G.當?shù)拇笮“l(fā)生變化,其它條件不變時,若,,直接寫出的長.解析:(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長DF到G點,并使FG=DC,連接GE,證明△ACF△EDG,進而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2)證明原理同(1),延長DF到G點,并使FG=DC,連接GE,證明△ACF△EDG,進而得到△GEF為等腰三角形,即可證明AF=GE=EF;(3)補充完整圖后證明四邊形AEGC為矩形,進而得到∠ABC=∠ABE=∠EBG=60°即可求解.【詳解】解:(1)延長DF到G點,并使FG=DC,連接GE,如下圖所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(2)仍舊成立,理由如下:延長DF到G點,并使FG=DC,連接GE,如下圖所示設(shè)BD延長線DM交AE于M點,∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(3)如下圖所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中山市博愛醫(yī)院2026年人才招聘49人備考題庫及參考答案詳解一套
- 5G+AI輔助重癥患者個體化治療策略
- 2026年廣州醫(yī)科大學附屬口腔醫(yī)院招聘備考題庫(一)完整答案詳解
- 3D打印人工皮膚的美學與功能重建
- 2025年義烏市勝利幼兒園招聘備考題庫及參考答案詳解1套
- 2025年改則縣審計局面向社會公開聘用編外工程師備考題庫及一套答案詳解
- 簡約中國風地產(chǎn)營銷策劃方案
- 項目高處作業(yè)施工方案
- 2025年廈門市集美區(qū)樂安小學非在編教師招聘備考題庫及答案詳解1套
- 2025年四川省岳池銀泰投資(控股)有限公司公開招聘急需緊缺專業(yè)人才備考題庫有答案詳解
- 《產(chǎn)科危急重癥早期識別中國專家共識(2024年版)》解讀
- 綠色建筑自評估報告參考樣式
- 涉密文件解密管理制度
- 高中英語必背3500單詞表完整版
- 巡特警(輔警)政審表
- 醫(yī)用耗材知識培訓課件
- 《竹木復合集裝箱底板》(T-CSF 009-2019)
- 婚介協(xié)議書模板
- ISO14001及ISO45001法律法規(guī)清單
- 成人學歷銷售培訓課件
- 民主測評及征求意見表
評論
0/150
提交評論