上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市閘北區(qū)2025-2026學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,向量在一條直線上,且則()A. B.C. D.2.設(shè)函數(shù)在定義域內(nèi)可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.3.如圖,在直三棱柱中,D為棱的中點,,,,則異面直線CD與所成角的余弦值為()A. B.C. D.4.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關(guān)系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定5.曲線在點處的切線方程是()A. B.C. D.6.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.97.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.9.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④10.設(shè)函數(shù)的導函數(shù)是,若,則()A. B.C. D.11.如圖,在三棱錐S-ABC中,E,F(xiàn)分別為SA,BC的中點,點G在EF上,且滿足,若,,,則()A. B.C. D.12.若,則()A.0 B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______14.等差數(shù)列前3項的和為30,前6項的和為100,則它的前9項的和為______.15.在中,若面積,則______16.直線恒過定點,則定點坐標為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知平行六面體中,底面ABCD是邊長為1的正方形,,,設(shè),,(1)用,,表示,并求;(2)求18.(12分)已知函數(shù).(1)若在處取得極值,求在處的切線方程;(2)討論的單調(diào)性;(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.19.(12分)已知函數(shù)(1)求關(guān)于x的不等式的解集;(2)若對任意的,恒成立,求實數(shù)a的取值范圍20.(12分)已知二項式的展開式中各二項式系數(shù)之和比各項系數(shù)之和小240.求:(1)n的值;(2)展開式中x項的系數(shù);(3)展開式中所有含x的有理項21.(12分)在平面直角坐標系中,動點到點的距離和它到直線的距離之比為.動點的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點分別為,點是曲線上異于的一點,直線的斜率為,直線的斜率為,求證:為定值.22.(10分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)向量加法的三角形法則得到化簡得到故答案為D2、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據(jù)原函數(shù)的單調(diào)性來考慮導函數(shù)的符號與零點情況,本題屬于基礎(chǔ)題.3、A【解析】以C為坐標原點,分別以,,方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.運用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.由已知可得,,,,則,,所以.又因為異面直線所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.4、B【解析】構(gòu)造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.5、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B6、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應用,屬于基礎(chǔ)題7、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.8、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃9、D【解析】當點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設(shè)是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當P與E不重合時,,,而,則,當P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結(jié)論點睛:兩個平面互相垂直,則一個平面內(nèi)任意一點在另一個平面上的射影都在這兩個平面的交線上.10、A【解析】求導后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導數(shù)的計算,考查了求導函數(shù)值,屬于基礎(chǔ)題.11、B【解析】利用空間向量基本定理結(jié)合已知條件求解【詳解】因為,所以,因為E,F(xiàn)分別為SA,BC的中點,所以,故選:B12、D【解析】由復數(shù)的乘方運算求,再求模即可.【詳解】由題設(shè),,故2.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:14、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項和為30,前6項和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關(guān)鍵,屬于中檔題15、##【解析】結(jié)合三角形面積公式與余弦定理得,進而得答案.【詳解】解:由三角形的面積公式得,所以,因為,所以,即,因為,所以故答案為:16、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡求解【小問1詳解】因為,,,,所以,因為底面ABCD是邊長為1的正方形,,,所以【小問2詳解】因為,底面ABCD是邊長為1的正方形,,,所以18、(1);(2)見解析;(3).【解析】(1)根據(jù)在處取極值可得,可求得,驗證可知滿足題意;根據(jù)導數(shù)的幾何意義求得切線斜率,利用點斜式可求得切線方程;(2)求導后,分別在和兩種情況下討論導函數(shù)的符號,從而得到的單調(diào)性;(3)根據(jù)在上無零點可知在上的最大值和最小值符號一致;分別在,兩種情況下根據(jù)函數(shù)的單調(diào)性求解最大值和最小值,利用符號一致構(gòu)造不等式求得結(jié)果.【詳解】(1)由題意得:在處取極值,解得:則當時,,單調(diào)遞減;當時,,單調(diào)遞增為極小值點,滿足題意函數(shù)當時,由得:在處的切線方程為:,即:(2)由題意知:函數(shù)的定義域為,①當時若,恒成立,恒成立在內(nèi)單調(diào)遞減②當時由,得:;由得:在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增綜上所述:當時,在內(nèi)單調(diào)遞減;當時,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增(3)①當時,在上單調(diào)遞減在上無零點,且②當時(i)若,即,則在上單調(diào)遞增由,知符合題意(ii)若,即,則在上單調(diào)遞減在上無零點,且(iii)若,即,則在上單調(diào)遞減,在上單調(diào)遞增,,符合題意綜上所述,實數(shù)的取值范圍是【點睛】本題考查導數(shù)在研究函數(shù)中的應用問題,涉及到導數(shù)幾何意義、極值與導數(shù)的關(guān)系、討論含參數(shù)函數(shù)的單調(diào)性、根據(jù)區(qū)間內(nèi)零點個數(shù)求解參數(shù)范圍問題.本題的關(guān)鍵是能夠通過分類討論的方式,確定導函數(shù)的符號,從而判斷出函數(shù)的單調(diào)性以及最值.19、(1)答案見解析(2)【解析】(1)求出對應方程的根,再根據(jù)根的大小進行討論,即可得解;(2)對任意的,恒成立,即恒成立,結(jié)合基本不等式求出的最小值即可得解.【小問1詳解】解:由已知易得即為:,令可得與,所以,當時,原不等式的解集為;當時,原不等式的解集為;當時,原不等式的解集為;【小問2詳解】解:由可得,由,得,所以可得,,當且僅當,即時等號成立,所以,所以的取值范圍是.20、(1)4(2)54(3)第1項,第3項,第5項【解析】(1)由題可得,解方程即得;(2)利用二項展開式的通項公式,即得;(3)利用二項展開式的通項公式,令,即求【小問1詳解】由已知,得,即,所以或(舍),∴【小問2詳解】設(shè)展開式的第項為令,得,則含x項的系數(shù)為【小問3詳解】由(2)可知,令,則有,2,4,所以含x的有理項為第1項,第3項,第5項21、(1),曲線是以為焦點的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論