版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省馬鞍山市2026屆數(shù)學(xué)高二第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象的大致形狀是()A. B.C. D.2.?dāng)?shù)列滿足,對(duì)任意,都有,則()A. B.C. D.3.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點(diǎn)為,則雙曲線的方程為()A. B.C. D.4.在三棱錐中,,D為上的點(diǎn),且,則()A. B.C. D.5.已知長(zhǎng)方體中,,,則直線與所成角的余弦值是()A. B.C. D.6.已知橢圓是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),設(shè)以為對(duì)角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.7.雙曲線的左頂點(diǎn)為,右焦點(diǎn),若直線與該雙曲線交于、兩點(diǎn),為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.8.已知,則在方向上的投影為()A. B.C. D.9.直線x-y+1=0被橢圓+y2=1所截得的弦長(zhǎng)|AB|等于()A. B.C. D.10.焦點(diǎn)坐標(biāo)為(1,0)拋物線的標(biāo)準(zhǔn)方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y11.已知,則點(diǎn)到平面的距離為()A. B.C. D.12.過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于PQ兩點(diǎn),若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.5二、填空題:本題共4小題,每小題5分,共20分。13.小明同學(xué)發(fā)現(xiàn)家中墻壁上燈光邊界類(lèi)似雙曲線的一支.如圖,P為雙曲線的頂點(diǎn),經(jīng)過(guò)測(cè)量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點(diǎn)位于直線PC上,則該雙曲線的焦距為_(kāi)___cm.14.已知雙曲線:的左、右焦點(diǎn)分別為,,為的右支上一點(diǎn),且,則的離心率為_(kāi)__________.15.棱長(zhǎng)為的正方體的頂點(diǎn)到截面的距離等于__________.16.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點(diǎn),點(diǎn)G是線段CD上靠近D的四等分點(diǎn),則直線EF與AG所成角的余弦值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在正方體中,、、分別是、、的中點(diǎn)(1)證明:平面平面;(2)證明:18.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個(gè)不同點(diǎn)P、Q滿足,證明:直線PQ過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).19.(12分)已知圓與直線相切(1)求圓O的標(biāo)準(zhǔn)方程;(2)若線段AB的端點(diǎn)A在圓O上運(yùn)動(dòng),端點(diǎn)B的坐標(biāo)是,求線段AB的中點(diǎn)M的軌跡方程20.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點(diǎn)M,使得二面角為,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由21.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過(guò)的直線交曲線于兩點(diǎn),求的取值范圍.22.(10分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(diǎn)(1)證明:(2)已知,求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】對(duì)A,根據(jù)當(dāng)時(shí),的值即可判斷;對(duì)B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對(duì)C,根據(jù)函數(shù)的奇偶性即可判斷;對(duì)D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對(duì)A,當(dāng)時(shí),,故A錯(cuò)誤;對(duì)B,的定義域?yàn)?,且,故為奇函?shù);,當(dāng)時(shí),當(dāng)時(shí),,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對(duì)C,為奇函數(shù),故C錯(cuò)誤;對(duì)D,函數(shù)在上不單調(diào),故D錯(cuò)誤.故選:B.2、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項(xiàng)相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點(diǎn)睛】本題考查累加法求數(shù)列通項(xiàng),考查利用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,考查邏輯思維能力和計(jì)算能力,屬于常考題.3、D【解析】分析:根據(jù)題設(shè)條件,列出方程,求出,,的值,即可求得雙曲線得標(biāo)準(zhǔn)方程詳解:∵雙曲線的離心率為,其左焦點(diǎn)為∴,∴∵∴∴雙曲線的標(biāo)準(zhǔn)方程為故選D.點(diǎn)睛:本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,根據(jù)題設(shè)條件求出,,的值是解決本題的關(guān)鍵.4、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運(yùn)算即可解出【詳解】因?yàn)?,所以,即故選:B5、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長(zhǎng)方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.6、C【解析】根據(jù)橢圓的對(duì)稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對(duì)稱兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶?duì)稱圖形,所以也是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C7、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點(diǎn)、關(guān)于軸對(duì)稱,且為線段的中點(diǎn),則,又因?yàn)闉榈妊苯侨切?,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.8、C【解析】利用向量數(shù)量積的幾何意義即得【詳解】,故在方向上的投影為:故選:C9、A【解析】聯(lián)立方程組,求出交點(diǎn)坐標(biāo),利用兩點(diǎn)間的距離公式求距離.【詳解】由得交點(diǎn)為(0,1),,則|AB|==.故選:A.10、B【解析】由題意設(shè)拋物線方程為y2=2px(p>0),結(jié)合焦點(diǎn)坐標(biāo)求得p,則答案可求【詳解】由題意可設(shè)拋物線方程為y2=2px(p>0),由焦點(diǎn)坐標(biāo)為(1,0),得,即p=2∴拋物的標(biāo)準(zhǔn)方程是y2=4x故選B【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題11、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A12、C【解析】依據(jù)拋物線定義可以證明:以過(guò)拋物線焦點(diǎn)F的弦PQ為直徑的圓與其準(zhǔn)線相切,則可以順利求得線段的長(zhǎng).【詳解】拋物線的焦點(diǎn)F,準(zhǔn)線取PQ中點(diǎn)H,分別過(guò)P、Q、H作拋物線準(zhǔn)線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點(diǎn)H到拋物線準(zhǔn)線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準(zhǔn)線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立直角坐標(biāo)系,利用代入法、雙曲線的對(duì)稱性進(jìn)行求解即可.【詳解】建立如圖所示的直角坐標(biāo)系,設(shè)雙曲線的標(biāo)準(zhǔn)方程為:,因?yàn)樵撾p曲線的漸近線相互垂直,所以,即,因?yàn)锳B=60cm,PC=20cm,所以點(diǎn)的坐標(biāo)為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:14、【解析】由雙曲線定義可得a,代入點(diǎn)P坐標(biāo)可得b,然后可解.【詳解】由題知,故,又點(diǎn)在雙曲線上,所以,解得,所以.故答案為:15、【解析】根據(jù)勾股定理可以計(jì)算出,這樣得到是直角三角形,利用等體積法求出點(diǎn)到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設(shè)點(diǎn)到的距離為,.故A到平面的距離為故答案為:【點(diǎn)睛】本題考查了點(diǎn)到線的距離,利用等體積法求出點(diǎn)到面的距離.是解題的關(guān)鍵.16、【解析】建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,即可求出點(diǎn)的坐標(biāo),從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,則,所以,所以,所以,,,,,設(shè),因?yàn)?,所以,所以,所以,,設(shè)直線與所成角為,則故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)連接,分別證明出平面,平面,利用面面平行的判定定理可證得結(jié)論成立;(2)證明出平面,利用線面垂直的性質(zhì)可證得結(jié)論成立.【小問(wèn)1詳解】證明:連接,在正方體中,,,所以,四邊形為平行四邊形,所以,在中,、分別為、的中點(diǎn),所以,,所以,,因?yàn)槠矫妫矫?,所以,平面因?yàn)榍?,、分別為、的中點(diǎn),則且,所以,四邊形為平行四邊形,則,,平面,平面,平面又,所以,平面平面【小問(wèn)2詳解】證明:在正方體中,平面,平面,,因?yàn)樗倪呅螢檎叫?,則,因?yàn)椋瑒t平面由知(1)平面平面,所以,平面,平面,因此,18、(1);(2)證明見(jiàn)解析,.【解析】(1)由題可得,即求;(2)設(shè)直線PQ的方程為,聯(lián)立橢圓方程,利用韋達(dá)定理法可得,即得.【小問(wèn)1詳解】由題可設(shè)橢圓的方程為,則,∴,∴橢圓的方程為;【小問(wèn)2詳解】當(dāng)直線PQ的斜率存在時(shí),可設(shè)直線PQ的方程為,設(shè),由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直線PQ的方程為過(guò)定點(diǎn);當(dāng)直線PQ的斜率不存在時(shí),不合題意.故直線PQ過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.19、(1)(2)【解析】(1)由圓心到直線的距離等于半徑即可求出.(2)由相關(guān)點(diǎn)法即可求出軌跡方程.【小問(wèn)1詳解】已知圓與直線相切,所以圓心到直線的距離為半徑.所以,所以圓O的標(biāo)準(zhǔn)方程為:【小問(wèn)2詳解】設(shè)因?yàn)锳B的中點(diǎn)是M,則,所以,又因A在圓O上運(yùn)動(dòng),則,所以帶入有:,化簡(jiǎn)得:.線段AB的中點(diǎn)M的軌跡方程為:.20、(1)證明見(jiàn)解析;(2)【解析】(1)取BC的中點(diǎn)O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標(biāo)系,假設(shè)點(diǎn)M存在,設(shè),求出M點(diǎn)坐標(biāo),然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點(diǎn)O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因?yàn)?,所以平面,因?yàn)槠矫嬷?,所以平面平?(2)由(1)問(wèn)知:兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間之間坐標(biāo)系.則,,,,若存在點(diǎn)M,則點(diǎn)M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點(diǎn)M,.【點(diǎn)睛】本題考查立體幾何探索是否存在的問(wèn)題,屬于中檔題.方法點(diǎn)睛:(1)判斷是否存在的問(wèn)題,一般先假設(shè)存在;(2)設(shè)出點(diǎn)坐標(biāo),作為已知條件,代入計(jì)算;(3)根據(jù)結(jié)果,判斷是否存在.21、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進(jìn)而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設(shè)而不求法以及向量數(shù)量積的坐標(biāo)公式,即可求解.【小問(wèn)1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點(diǎn),,解得.設(shè),則有,,因此,∵,∴且,故或,故;②當(dāng)直線的斜率不存在時(shí),此時(shí),易知,,故.綜上所述,所求的取值范圍是.22、(1)詳見(jiàn)解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理管理組織核心概念與理論課件
- 2024-2025學(xué)年陜西省多校聯(lián)考高二下學(xué)期期中考試歷史試題(解析版)
- 2024-2025學(xué)年山東省泰安市高二下學(xué)期期中考試歷史試題(解析版)
- 2026年國(guó)際漢語(yǔ)教師資格證考試模擬題
- 2026年編程邏輯訓(xùn)練邏輯推理與算法設(shè)計(jì)模擬試題
- 2026年律師助理入職位試模擬題集
- 2026年行業(yè)法律法規(guī)及規(guī)章制度自測(cè)題
- 2026年醫(yī)學(xué)執(zhí)業(yè)醫(yī)師考試臨床病例分析與診斷技巧模擬試題及答案
- 2026年MBA入學(xué)考試模擬卷及評(píng)分標(biāo)準(zhǔn)
- 2026年智能制造機(jī)器人操作認(rèn)證題庫(kù)
- 模擬政協(xié)培訓(xùn)課件
- 人教版七年級(jí)上冊(cè)數(shù)學(xué)有理數(shù)計(jì)算題分類(lèi)及混合運(yùn)算練習(xí)題(200題)
- 2025年云南省普洱市事業(yè)單位招聘考試(833人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑工人解除勞動(dòng)合同協(xié)議
- 電力行業(yè)網(wǎng)絡(luò)與信息安全管理辦法
- 蘭州彤輝商貿(mào)有限公司肅南縣博懷溝一帶銅鐵礦礦產(chǎn)資源開(kāi)發(fā)與恢復(fù)治理方案
- (高清版)DZT 0430-2023 固體礦產(chǎn)資源儲(chǔ)量核實(shí)報(bào)告編寫(xiě)規(guī)范
- 狂人筆記的教案
- 健康養(yǎng)老產(chǎn)業(yè)項(xiàng)目可行性分析
- GB/T 39104.2-2020紡織品抗真菌性能的測(cè)定第2部分:平皿計(jì)數(shù)法
- GB/T 25119-2010軌道交通機(jī)車(chē)車(chē)輛電子裝置
評(píng)論
0/150
提交評(píng)論