版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025-2026學(xué)年天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.2.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.13623.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.4.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.5.雙曲線的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為326.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點P滿足,則()A. B.1C. D.27.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為8.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.9.下列說法正確的有()個.①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項.A.1 B.2C.3 D.010.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.11.在平面直角坐標(biāo)系中,直線+的傾斜角是()A. B.C. D.12.已知空間向量,,,則()A.4 B.-4C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知定點,點在直線上運動,則,兩點的最短距離為________14.設(shè)點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________15.“直線和直線垂直”的充要條件是______16.如圖,在四棱錐中,是邊長為4的等邊三角形,四邊形ABCD是等腰梯形,,,,若四棱錐的體積為24,則四棱錐外接球的表面積是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前n項和為,,(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個等差數(shù)列,記插入的這n個數(shù)之和為,求數(shù)列的前n項和18.(12分)如圖,點是曲線上的動點(點在軸左側(cè)),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.19.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點.(1)若點是線段的中點,求證:直線平面;(2)求證:平面平面.20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.21.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.22.(10分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若在上有解,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D2、B【解析】觀察前4項可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B3、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B4、D【解析】由題設(shè)條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結(jié)合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設(shè),可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D5、D【解析】根據(jù)雙曲線的離心率、漸近線、點到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D6、D【解析】設(shè),構(gòu)建空間直角坐標(biāo)系,令且,求出,,再由向量垂直的坐標(biāo)表示列方程,結(jié)合點P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標(biāo)系,若,則,,且,所以,,又存在唯一的一點P滿足,所以,則,故,可得,此時,所以.故選:D7、D【解析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D8、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因為函數(shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B9、A【解析】由向量數(shù)量積為實數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對于①,與共線,與共線,故不一定成立,故①正確;對于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯誤;對于③,若,取,則數(shù)不是數(shù)的等比中項,故③錯誤故選:A10、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B11、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B12、A【解析】根據(jù)空間向量平行求出x,y,進(jìn)而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點即可【詳解】定點,點在直線上運動,當(dāng)線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標(biāo)是,所以,故答案為:14、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關(guān)于、的齊次等式,進(jìn)而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.15、或【解析】利用直線一般式方程表示垂直的方法求解.【詳解】因為直線和直線垂直,所以,解得或;故答案為:或.16、##【解析】根據(jù)球的截面圓圓心與球心的連線垂直截面可確定垂直平面ABCD,構(gòu)造直角三角形求解球的半徑即可得解.【詳解】如圖,分別取BC,AD的中點,E,連接PE,,,.因為是邊長為4的等邊三角形,所以.因為四邊形ABCD是等腰梯形,,,,所以,.因為四棱錐的體積為24,所以,所以.因為E是AD的中點,所以.因為,所以平面ABCD.因為,所以四邊形ABCD外接圓的圓心為,半徑.設(shè)四棱錐外接球的球心為O,連接,OP,OB,過點О作,垂足為F.易證四邊形是矩形,則,.設(shè)四棱錐外接球的半徑為R,則,即,解得,故四棱錐外接球的表面積是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設(shè)等比數(shù)列公比為q,利用與關(guān)系可求q,在中令n=1可求;(2)根據(jù)等差數(shù)列前n項和公式可求,分析{}的通項公式,利用錯位相減法求其前n項和.【小問1詳解】設(shè)等比數(shù)列的公比為q,由己知,可得,兩式相減可得,即,整理得,可知,已知,令,得,即,解得,故等比數(shù)列的通項公式為;【小問2詳解】由題意知在與之間插入n個數(shù),這個數(shù)組成以為首項的等差數(shù)列,∴,設(shè){}前n項和為,①①×3:②①-②:18、(1);(2)當(dāng)時取到最大值,【解析】(1)設(shè)點,則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點,由是曲線上的動點得:,由于橢圓與軸交點為,故,所以即:(2)結(jié)合(1),對兩邊平方得:,令,則,所以當(dāng)時,,當(dāng)時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時,取到最大值,.【點睛】本題考查利用導(dǎo)數(shù)研究實際問題,考查數(shù)學(xué)應(yīng)用能力與計算能力,是中檔題.19、(1)證明見解析(2)證明見解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問1詳解】由分別為線段的中點.由中位線定理知,又平面,且平面,所以直線平面【小問2詳解】兩兩垂直,即,且所以平面,又平面,所以由,且分別為線段的中點,所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.20、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標(biāo)原點,分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,21、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?詳解】由于平面,平面,所以,由于,又,所以平面【小問2詳解】兩兩垂直,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個法向量為設(shè)平面的一個法向量為,由,得,故可取所以所以二面角的平面角的余弦值22、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇南京機(jī)電職業(yè)技術(shù)學(xué)院招聘高層次人才10人參考考試題庫及答案解析
- 2025年合肥共達(dá)職業(yè)技術(shù)學(xué)院專任教師公開招聘9人備考筆試試題及答案解析
- 2025廣西南寧市住房保障發(fā)展中心招聘編外技術(shù)行政輔助崗工作人員1人參考考試試題及答案解析
- 2026云南昆明市官渡區(qū)公共就業(yè)和人才服務(wù)中心招聘1人備考考試題庫及答案解析
- 2025江西省中核南方新材料有限公司社會招聘2人備考考試試題及答案解析
- 2025下半年四川綿陽職業(yè)技術(shù)學(xué)院考核招聘高層次人才2人參考筆試題庫附答案解析
- 2025福建三明經(jīng)濟(jì)開發(fā)區(qū)管理委員會直屬事業(yè)單位公開招聘專業(yè)技術(shù)人員2人備考筆試試題及答案解析
- 2025年福建泉州惠安縣總醫(yī)院(第四季度)招聘工作人員9人備考筆試試題及答案解析
- 2025四川長虹電源股份有限公司招聘銷售內(nèi)控會計崗位1人參考筆試題庫附答案解析
- 2026中國農(nóng)業(yè)科學(xué)院第一批統(tǒng)一招聘(中國農(nóng)科院茶葉研究所)參考筆試題庫附答案解析
- 2026年鄭州澍青醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)技能測試必刷測試卷帶答案
- 2025年山東省煙臺市輔警招聘公安基礎(chǔ)知識考試題庫及答案
- (一診)達(dá)州市2026屆高三第一次診斷性測試英語試題(含標(biāo)準(zhǔn)答案)
- 隆胸手術(shù)術(shù)中護(hù)理配合
- 醫(yī)療器械質(zhì)量安全風(fēng)險會商管理制度
- 【教學(xué)課件】謀求互利共贏-精品課件
- 情感性精神障礙護(hù)理課件
- 從投入產(chǎn)出表剖析進(jìn)出口貿(mào)易結(jié)構(gòu)
- 偏微分方程的數(shù)值解法課后習(xí)習(xí)題答案
- 礦山斜井提升安全技術(shù)
- 石方破碎開挖施工方案
評論
0/150
提交評論