2026屆湖北省孝感市八校高二數學第一學期期末考試試題含解析_第1頁
2026屆湖北省孝感市八校高二數學第一學期期末考試試題含解析_第2頁
2026屆湖北省孝感市八校高二數學第一學期期末考試試題含解析_第3頁
2026屆湖北省孝感市八校高二數學第一學期期末考試試題含解析_第4頁
2026屆湖北省孝感市八校高二數學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆湖北省孝感市八校高二數學第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的內角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形2.已知點是點在坐標平面內的射影,則點的坐標為()A. B.C. D.3.下列結論正確的個數為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.14.已知定義在R上的函數滿足,且有,則的解集為()A B.C. D.5.若函數在區(qū)間內存在最大值,則實數的取值范圍是()A. B.C. D.6.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或47.設變量x,y滿足約束條件則目標函數的最小值為()A.3 B.1C.0 D.﹣18.已知向量,則下列結論正確的是()A.B.C.D.9.設F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.910.直線與圓相切,則實數等于()A.或 B.或C.3或5 D.5或311.若,則下列等式一定成立的是()A. B.C. D.12.已知拋物線過點,點為平面直角坐標系平面內一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設數列的前n項和為,若,且是等差數列.則的值為__________14.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________15.《周髀算經》是中國最古老的天文學和數學著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為___________尺.16.已知一個樣本數據為3,3,5,5,5,7,7,現在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數據相比,新樣本數據平均數______,方差______.(“變大”、“變小”、“不變”)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設AB是過拋物線焦點F的弦,若,,求證:(1);(2)(為弦AB的傾斜角)18.(12分)已知直線與圓.(1)當直線l恰好平分圓C的周長時,求m的值;(2)當直線l被圓C截得的弦長為時,求m的值.19.(12分)已知等差數列滿足:,,數列的前n項和為(1)求及;(2)設是首項為1,公比為3的等比數列,求數列的前項和20.(12分)在數列中,,,數列滿足(1)求證:數列是等比數列,并求出數列的通項公式;(2)數列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數、(其中),若、、三個數經適當排序后能構成等差數列,求符合條件的數組.21.(12分)設函數,且存在兩個極值點、,其中.(1)求實數的取值范圍;(2)若恒成立,求最小值.22.(10分)已知數列滿足,記數列的前項和為,且,(1)求數列的通項公式;(2)若,求數列的前100項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因為,所以,則,所以,所以是等腰三角形.故選:B.2、D【解析】根據空間中射影的定義即可得到答案.【詳解】因為點是點在坐標平面內的射影,所以的豎坐標為0,橫、縱坐標與A點的橫、縱坐標相同,所以點的坐標為.故選:D3、D【解析】根據常數函數的導數為0,可判斷①;根據冪函數的求導公式,可判斷②;根據指數函數以及對數函數的求導公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D4、A【解析】構造,應用導數及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴在R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A5、A【解析】利用函數的導數,求解函數的極值,推出最大值,然后轉化列出不等式組求解的范圍即可【詳解】,或,∴在單調遞減,在單調遞增,在單調遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.6、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.7、C【解析】線性規(guī)劃問題,作出可行域后,根據幾何意義求解【詳解】作出可行域如圖所示,,數形結合知過時取最小值故選:C8、D【解析】由題可知:,,,故選;D9、B【解析】由雙曲線的的定義可得,于是將問題轉化為求的最小值,由得出答案.【詳解】設雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當且僅當三點共線時,取得等號.故選:B10、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C11、D【解析】利用復數除法運算和復數相等可用表示出,進而得到之間關系.【詳解】,,,則.故選:D.12、B【解析】將點的坐標代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標,分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質可求得點與原點間的距離的最小值.【詳解】將點的坐標代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當點、、三點共線且在線段上時,取最小值,且.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】根據給定條件求出,再求出數列的通項即可計算作答.【詳解】依題意,因是等差數列,則其公差,于是得,,當時,,而滿足上式,因此,,所以.故答案為:5214、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:315、【解析】利用等差數列的通項公式求出首項和公差,然后求出其中某一項.【詳解】解:由題意得從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數列,設其公差為,解得故立夏的日影子長為尺.故答案為:16、①.不變②.變大【解析】通過計算平均數和方差來確定正確答案.【詳解】原樣本平均數為,原樣本方差為,新樣本平均數為,新樣本方差為.所以平均數不變,方差變大.故答案為:不變;變大三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)設直線的方程為,代入,再利用韋達定理,即可得到結論;(2)由拋物線的定義,結合余弦函數的定義,即可得到的長,同理可得的長,兩式相乘即可證明;【小問1詳解】證明:由題意設直線的方程為,代入,可得,所以;【小問2詳解】證明:如圖,不妨設弦AB的傾斜角為銳角,作垂直于拋物線準線,垂足為M,N,由拋物線的定義可得,所以,同理可得,,所以,當為直角或鈍角時,同理可證明,故.18、(1);(2)1.【解析】(1)將圓C的圓心坐標代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點到直線距離公式計算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.19、(1);(2)【解析】(1)先根據已知求出,再求及.(2)先根據已知得到,再利用分組求和求數列的前項和.【詳解】(1)設等差數列的公差為d,因為,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【點睛】(1)本題主要考查等差數列的通項和前n項和求法,考查分組求和和等比數列的求和公式,意在考查學生對這些知識的掌握水平和計算推理能力.(2)有一類數列,它既不是等差數列,也不是等比數列,但是數列是等差數列或等比數列或常見特殊數列,則可以將這類數列適當拆開,可分為幾個等差、等比數列或常見的特殊數列,然后分別求和,再將其合并即可.這叫分組求和法.20、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數列的定義可證得結論成立,確定等比數列的首項和公比,可求得數列的通項公式;(2)求得,然后分、兩種情況討論,結合裂項相消法可得出的表達式;(3)求得,分、、三種情況討論,利用奇數與偶數的性質以及整數的性質可求得、的值,綜合可得出結論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數列為等比數列,且該數列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當n=1時,,當時,.因為滿足,所以.【小問3詳解】解:,、、這三項經適當排序后能構成等差數列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數,右邊為奇數,所以,②不成立;③若,同②可知③也不成立綜合①②③得,21、(1)(2)【解析】(1)存在兩個極值點,等價于其導函數有兩個相異零點;(2)適當構造函數,并注意與關系,轉化為函數求最大值問題,即可求得的范圍.【小問1詳解】(),,函數存在兩個極值點、,且,關于的方程,即在內有兩個不等實根,令,,即,,實數的取值范圍是.【小問2詳解】函數在上有兩個極值點,由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設,則,,,即在上是減函數,(1),,在上是增函數,(1),,恒成立,恒成立,,的最小值為.【點睛】關鍵點點睛:本題考查導函數,函數的單調性,最值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論