2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題含解析_第1頁
2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題含解析_第2頁
2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題含解析_第3頁
2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題含解析_第4頁
2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025年云南省馬關(guān)縣一中高二上數(shù)學(xué)期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題P:,,則命題P的否定為()A., B.,C., D.,2.在四面體OABC中,點M在線段OA上,且,N為BC中點,已知,,,則等于()A. B.C. D.3.下列直線中,與直線垂直的是()A. B.C. D.4.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準(zhǔn)線與坐標(biāo)軸的交點,則的最大值是()A.2 B.C. D.5.校慶當(dāng)天,學(xué)校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側(cè)不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.6.知點分別為圓上的動.點,為軸上一點,則的最小值()A. B.C. D.7.焦點坐標(biāo)為,(0,4),且長半軸的橢圓方程為()A. B.C. D.8.設(shè),,則“”是“”的A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件9.若(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知是等比數(shù)列,,,則()A. B.C. D.11.不等式解集為()A. B.C. D.12.設(shè)數(shù)列的前項和為,當(dāng)時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F恰好是橢圓的右焦點,且兩條曲線交點的連線過點F,則該橢圓的離心率為____________14.已知空間向量,則使成立的x的值為___________15.已知橢圓,分別是橢圓的上、下頂點,是左頂點,為左焦點,直線與相交于點,則________16.已知函數(shù)f(x)=x3-3x2+2,則函數(shù)f(x)的極大值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點與短軸的一個頂點構(gòu)成等邊三角形.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點的直線與交于不同的兩點,求面積的最大值.18.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;19.(12分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.20.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關(guān)于的方程在上有解,求的取值范圍.21.(12分)已知橢圓E:的離心率,且右焦點到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)四邊形的頂點在橢圓上,且對角線,過原點,若,證明:四邊形的面積為定值.22.(10分)已知圓與直線相切(1)求圓O的標(biāo)準(zhǔn)方程;(2)若線段AB的端點A在圓O上運動,端點B的坐標(biāo)是,求線段AB的中點M的軌跡方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B2、B【解析】根據(jù)空間向量基本定理結(jié)合已知條件求解【詳解】因為N為BC中點,所以,因為M在線段OA上,且,所以,所以,故選:B3、C【解析】,,若,則,項,符合條件,故選4、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,則,當(dāng)直線PA與拋物線相切時,最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時的點P的坐標(biāo),然后進(jìn)行計算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,所以則,當(dāng)最小時,則值最大,所以當(dāng)直線PA與拋物線相切時,θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標(biāo)為1,即P的坐標(biāo),所以,,所以的最大值為:,故選:B【點睛】關(guān)鍵點睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時可以應(yīng)用結(jié)論來處理的;平時練習(xí)時應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實現(xiàn)點點距和點線距的轉(zhuǎn)化5、B【解析】在出矩形中,設(shè),得到,結(jié)合基本不等式,即可求解【詳解】如圖所示,在矩形中,設(shè),則,根據(jù)題意,可得矩形圍欄總長為因為,可得,當(dāng)且僅當(dāng)時,即時,等號成立,即圍欄總長最小需要米.故選:B.6、B【解析】求出圓關(guān)于軸的對稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為1,∴若與關(guān)于x軸對稱,則,即,當(dāng)三點不共線時,當(dāng)三點共線時,所以同理(當(dāng)且僅當(dāng)時取得等號)所以當(dāng)三點共線時,當(dāng)三點不共線時,所以∴的最小值為圓與圓的圓心距減去兩個圓的半徑和,∴.故選:B.7、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點位置得出橢圓方程【詳解】因為,所以,而焦點在軸上,所以橢圓方程為故選:B8、C【解析】不能推出,反過來,若則成立,故為必要不充分條件.9、A【解析】根據(jù)復(fù)數(shù)運算法則求出z=a+bi形式,根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】,z對應(yīng)的點在第一象限.故選:A10、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項公式,則可求出,得數(shù)列是一個等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個等比數(shù)列.所以=.故選:D11、C【解析】化簡一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.12、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當(dāng)且僅當(dāng)時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問題能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)兩條曲線交點為根據(jù)橢圓和拋物線對稱性知,不妨點A在第一象限,由A在拋物線上得,A在橢圓上得.則由條件得:.解得(舍去)14、##【解析】利用空間向量垂直的坐標(biāo)表示列方程求參數(shù)x的值.【詳解】由題設(shè),,可得.故答案為:.15、##【解析】先求出頂點和焦點坐標(biāo),求出直線直線與的斜率,利用到角公式求出的正切值,進(jìn)而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:16、2【解析】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,從而得到極大值.【詳解】,令,解得:,00極大值極小值所以當(dāng)時,函數(shù)取得極大值,即函數(shù)的極大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意計算得到,得到橢圓方程.(2)設(shè)直線的方程為,聯(lián)立方程,根據(jù)韋達(dá)定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標(biāo)準(zhǔn)方程是.(2)由題意直線的斜率不能為,設(shè)直線的方程為,由方程組得,設(shè),,所以,,所以,所以,令(),則,,因為在上單調(diào)遞增,所以當(dāng),即時,面積取得最大值為.【點睛】本題考查了橢圓方程,橢圓內(nèi)三角形面積的最值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值19、(1)(2)證明見解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡求得直線的斜率為定值.【小問1詳解】由題可知,解得,從而粚圓方程為.【小問2詳解】證明設(shè)直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.20、(1)(2)【解析】(1)求,由條件可得,得出關(guān)于的方程組,求解可得;(2)令,注意,所以在具有單調(diào)性時,則方程無解,求,對分類討論,求出單調(diào)區(qū)間,結(jié)合函數(shù)值的變化趨勢,即可求得結(jié)論.【詳解】解:(1),因為,所以,解得,,所以.(2)令,則.令,則在上單調(diào)遞增.當(dāng),即時,,所以單調(diào)遞增,又,所以;當(dāng),即時,則存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又,則.當(dāng)時,,所以在上有解.綜上,的取值范圍為.【點睛】本題考查導(dǎo)數(shù)的幾何意義求參數(shù),考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)區(qū)間、函數(shù)零點的問題,考查分類討論思想,屬于較難題.21、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組求解即可;(2)設(shè),代入,利用韋達(dá)定理,通過,結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論