版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版七年級數(shù)學(xué)下冊期末解答題復(fù)習(xí)試卷附答案一、解答題1.如圖1,用兩個邊長相同的小正方形拼成一個大的正方形.(1)如圖2,若正方形紙片的面積為1,則此正方形的對角線AC的長為dm.(2)如圖3,若正方形的面積為16,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為12的長方形紙片,使它的長和寬之比為3∶2,他能裁出嗎?請說明理由.2.教材中的探究:如圖,把兩個邊長為1的小正方形沿對角線剪開,用所得到的4個直角三角形拼成一個面積為2的大正方形.由此,得到了一種能在數(shù)軸上畫出無理數(shù)對應(yīng)點(diǎn)的方法(數(shù)軸的單位長度為1).(1)閱讀理解:圖1中大正方形的邊長為________,圖2中點(diǎn)A表示的數(shù)為________;(2)遷移應(yīng)用:請你參照上面的方法,把5個小正方形按圖3位置擺放,并將其進(jìn)行裁剪,拼成一個大正方形.①請在圖3中畫出裁剪線,并在圖3中畫出所拼得的大正方形的示意圖.②利用①中的成果,在圖4的數(shù)軸上分別標(biāo)出表示數(shù)-0.5以及的點(diǎn),并比較它們的大?。?.已知在的正方形網(wǎng)格中,每個小正方形的邊長為1.(1)計算圖①中正方形的面積與邊長.(2)利用圖②中的正方形網(wǎng)格,作出面積為8的正方形,并在此基礎(chǔ)上建立適當(dāng)?shù)臄?shù)軸,在數(shù)軸上表示實(shí)數(shù)和.4.觀察下圖,每個小正方形的邊長均為1,(1)圖中陰影部分的面積是多少?邊長是多少?(2)估計邊長的值在哪兩個整數(shù)之間.5.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設(shè)計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設(shè)計一種裁剪方案,若不能,請簡要說明理由.二、解答題6.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊螅鋫鞑ヂ窂綖镺→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.7.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對應(yīng)點(diǎn)分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時,請直接寫出旋轉(zhuǎn)的時間.8.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.9.已知,點(diǎn)在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請直接寫出與之間的數(shù)量關(guān)系.10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動,當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動時(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.三、解答題11.為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動的速度是每秒2度,燈轉(zhuǎn)動的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動30秒,燈射線才開始轉(zhuǎn)動,在燈射線到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時轉(zhuǎn)動,在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過作交于點(diǎn),且,則在轉(zhuǎn)動過程中,請?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請說明理由.12.問題情境(1)如圖1,已知,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得;問題遷移(2)圖2,圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合與相交于點(diǎn),有一動點(diǎn)在邊上運(yùn)動,連接,記.①如圖2,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動時,請直接寫出與之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動時,與之間有何數(shù)量關(guān)系?請判斷并說明理由.13.已知,如圖①,∠BAD=50°,點(diǎn)C為射線AD上一點(diǎn)(不與A重合),連接BC.(1)[問題提出]如圖②,AB∥CE,∠BCD=73°,則:∠B=.(2)[類比探究]在圖①中,探究∠BAD、∠B和∠BCD之間有怎樣的數(shù)量關(guān)系?并用平行線的性質(zhì)說明理由.(3)[拓展延伸]如圖③,在射線BC上取一點(diǎn)O,過O點(diǎn)作直線MN使MN∥AD,BE平分∠ABC交AD于E點(diǎn),OF平分∠BON交AD于F點(diǎn),交AD于G點(diǎn),當(dāng)C點(diǎn)沿著射線AD方向運(yùn)動時,∠FOG的度數(shù)是否會變化?若變化,請說明理由;若不變,請求出這個不變的值.14.長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動的速度是a°/秒,燈B轉(zhuǎn)動的速度是b°/秒,且a、b滿足.假定這一帶長江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉(zhuǎn)動45秒,燈A射線才開始轉(zhuǎn)動,當(dāng)燈B射線第一次到達(dá)時運(yùn)動停止,問A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時轉(zhuǎn)動,在燈A射線到達(dá)之前.若射出的光束交于點(diǎn)C,過C作交于點(diǎn)D,則在轉(zhuǎn)動過程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.15.如圖1,,在、內(nèi)有一條折線.(1)求證:;(2)在圖2中,畫的平分線與的平分線,兩條角平分線交于點(diǎn),請你補(bǔ)全圖形,試探索與之間的關(guān)系,并證明你的結(jié)論;(3)在(2)的條件下,已知和均為鈍角,點(diǎn)在直線、之間,且滿足,,(其中為常數(shù)且),直接寫出與的數(shù)量關(guān)系.四、解答題16.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點(diǎn)O,點(diǎn)A是平面內(nèi)一點(diǎn),AB、AC交MN于B、C兩點(diǎn),AD平分∠BAC交PQ于點(diǎn)D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.17.直線MN與直線PQ垂直相交于O,點(diǎn)A在射線OP上運(yùn)動,點(diǎn)B在射線OM上運(yùn)動,A、B不與點(diǎn)O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點(diǎn)A、B在運(yùn)動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).18.在中,,,點(diǎn)在直線上運(yùn)動(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動,且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時,則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動到點(diǎn)的左側(cè)時,其他條件不變,請猜想和的數(shù)量關(guān)系,并說明理由;(3)當(dāng)點(diǎn)運(yùn)動到點(diǎn)的右側(cè)時,其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)19.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).20.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動,∠BDC的角平分線交EB的延長線于點(diǎn)N,在點(diǎn)C的運(yùn)動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.【參考答案】一、解答題1.(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:解析:(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:(1)∵正方形紙片的面積為,∴正方形的邊長,∴.故答案為:.(2)不能;根據(jù)題意設(shè)長方形的長和寬分別為和.∴長方形面積為:,解得:,∴長方形的長邊為.∵,∴他不能裁出.【點(diǎn)睛】本題考查了算術(shù)平方根在長方形和正方形面積中的應(yīng)用,靈活的進(jìn)行算術(shù)平方根計算及無理數(shù)大小比較是解題的關(guān)鍵.2.(1);(2)①見解析;②見解析,【分析】(1)設(shè)正方形邊長為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②解析:(1);(2)①見解析;②見解析,【分析】(1)設(shè)正方形邊長為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②由題(1)的原理得出大正方形的邊長為,然后在數(shù)軸上以-3為圓心,以大正方形的邊長為半徑畫弧交數(shù)軸的右方與一點(diǎn)M,再把N點(diǎn)表示出來,即可比較它們的大?。驹斀狻拷猓涸O(shè)正方形邊長為a,∵a2=2,∴a=,故答案為:,;(2)解:①裁剪后拼得的大正方形如圖所示:②設(shè)拼成的大正方形的邊長為b,∴b2=5,∴b=±,在數(shù)軸上以-3為圓心,以大正方形的邊長為半徑畫弧交數(shù)軸的右方與一點(diǎn)M,則M表示的數(shù)為-3+,看圖可知,表示-0.5的N點(diǎn)在M點(diǎn)的右方,∴比較大?。海军c(diǎn)睛】本題主要考查平方根與算術(shù)平方根的應(yīng)用及實(shí)數(shù)的大小比較,熟練掌握平方根與算術(shù)平方根的意義及實(shí)數(shù)的大小比較是解題的關(guān)鍵.3.(1)正方形的面積為10,正方形的邊長為;(2)見解析【分析】(1)利用正方形的面積減去4個直角三角形的面積即可求出正方形的面積,然后根據(jù)算術(shù)平方根的意義即可求出邊長;(2)根據(jù)(1)的方法畫解析:(1)正方形的面積為10,正方形的邊長為;(2)見解析【分析】(1)利用正方形的面積減去4個直角三角形的面積即可求出正方形的面積,然后根據(jù)算術(shù)平方根的意義即可求出邊長;(2)根據(jù)(1)的方法畫出圖形,然后建立數(shù)軸,根據(jù)算術(shù)平方根的意義即可表示出結(jié)論.【詳解】解:(1)正方形的面積為4×4-4××3×1=10則正方形的邊長為;(2)如下圖所示,正方形的面積為4×4-4××2×2=8,所以該正方形即為所求,如圖建立數(shù)軸,以數(shù)軸的原點(diǎn)為圓心,正方形的邊長為半徑作弧,分別交數(shù)軸于兩點(diǎn)∴正方形的邊長為∴弧與數(shù)軸的左邊交點(diǎn)為,右邊交點(diǎn)為,實(shí)數(shù)和在數(shù)軸上如圖所示.【點(diǎn)睛】此題考查的是求網(wǎng)格中圖形的面積和實(shí)數(shù)與數(shù)軸,掌握算術(shù)平方根的意義和利用數(shù)軸表示無理數(shù)是解題關(guān)鍵.4.(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可解析:(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可以得到陰影正方形的邊長;(2)根據(jù),可以估算出邊長的值在哪兩個整數(shù)之間.【詳解】(1)由圖可知,圖中陰影正方形的面積是:5×5?=17則陰影正方形的邊長為:答:圖中陰影部分的面積17,邊長是(2)∵所以4<<5∴邊長的值在4與5之間;【點(diǎn)睛】本題主要考查了無理數(shù)的估算及算術(shù)平方根的定義,解題主要利用了勾股定理和正方形的面積求解,有一定的綜合性,解題關(guān)鍵是無理數(shù)的估算.5.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設(shè)長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片二、解答題6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時,②當(dāng)BC∥EF時,③當(dāng)BC∥DF時,分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時針旋轉(zhuǎn)的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.8.(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM解析:(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,故的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.9.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).10.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角以及同旁內(nèi)角.三、解答題11.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時,根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時,根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動時間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,①當(dāng)0<t<90時,如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時,如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時,兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會變化.理由:設(shè)燈A射線轉(zhuǎn)動時間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時注意:兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ).12.(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;解析:(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;②過P作PQ∥DF,依據(jù)平行線的性質(zhì)可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【詳解】解:(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案為:80;(2)①如圖2,過點(diǎn)P作FD的平行線PQ,則DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠α+∠β;②如圖3,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠β-∠α;理由:過P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.13.(1);(2),見解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯角相等可求出角的度數(shù);(2)過點(diǎn)作∥,類似(1)利用平行線的性質(zhì),得出三個角的關(guān)系;(3)運(yùn)用解析:(1);(2),見解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯角相等可求出角的度數(shù);(2)過點(diǎn)作∥,類似(1)利用平行線的性質(zhì),得出三個角的關(guān)系;(3)運(yùn)用(2)的結(jié)論和平行線的性質(zhì)、角平分線的性質(zhì),可求出的度數(shù),可得結(jié)論.【詳解】(1)因?yàn)椤?,所以,因?yàn)椤螧CD=73°,所以,故答案為:(2),如圖②,過點(diǎn)作∥,則,.因?yàn)?,所以,?)不變,設(shè),因?yàn)槠椒?,所以.由?)的結(jié)論可知,且,則:.因?yàn)椤危?,因?yàn)槠椒?,所以.因?yàn)椤?,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題關(guān)鍵是熟練運(yùn)用平行線的性質(zhì)證明角相等,通過等量代換等方法得出角之間的關(guān)系.14.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動秒,兩燈的光束互相平行,①當(dāng)時,,解得;②當(dāng)時,,解得;③當(dāng)時,,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時,兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動時間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.15.(1)見解析;(2);見解析;(3)【分析】(1)過點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過解析:(1)見解析;(2);見解析;(3)【分析】(1)過點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過點(diǎn)作,∵,∴,∴,,又∵,∴;(2)如圖2,由(1)可得:,,∵的平分線與的平分線相交于點(diǎn),∴,∴;(3)由(2)可得:,,∵,,∴,∴;【點(diǎn)睛】考核知識點(diǎn):平行線性質(zhì)和判定的綜合運(yùn)用.熟練運(yùn)用平行線性質(zhì)和判定是關(guān)鍵.四、解答題16.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點(diǎn)F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點(diǎn)F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點(diǎn)睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.17.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個角是另一個角的倍分情況進(jìn)行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個角是另一個角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點(diǎn)睛】本題主要考查的是角平分線的性質(zhì)以及三角形內(nèi)角和定理的應(yīng)用.解決這個問題的關(guān)鍵就是要能根據(jù)角平分線的性質(zhì)將外角的度數(shù)與三角形的內(nèi)角聯(lián)系起來,然后再根據(jù)內(nèi)角和定理進(jìn)行求解.另外需要分類討論的時候一定要注意分類討論的思想.18.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職電氣(電氣控制基礎(chǔ))試題及答案
- 2025年高職(汽車電子技術(shù))汽車電控系統(tǒng)測試卷及解析
- 2025年中職(數(shù)字媒體技術(shù)應(yīng)用)數(shù)字媒體概論期末測試題及解析
- 大學(xué)(電子信息工程)電子技術(shù)基礎(chǔ)2026年綜合測試題及答案
- 2025年大學(xué)成本會計(高級成本會計)試題及答案
- 深度解析(2026)《GBT 18295-2001油氣儲層砂巖樣品 掃描電子顯微鏡分析方法》(2026年)深度解析
- 深度解析(2026)《GBT 18204.10-2000游泳池水微生物檢驗(yàn)方法 大腸菌群測定》
- 深度解析(2026)《GBT 17906-2021消防應(yīng)急救援裝備 液壓破拆工具通 用技術(shù)條件》
- 深度解析(2026)《GBT 17886.3-1999標(biāo)稱電壓1 kV及以下交流電力系統(tǒng)用非自愈式并聯(lián)電容器 第3部分內(nèi)部熔絲》
- 山西財經(jīng)大學(xué)《中學(xué)語文課堂教學(xué)設(shè)計與實(shí)踐》2025-2026學(xué)年第一學(xué)期期末試卷
- 消化內(nèi)鏡預(yù)處理操作規(guī)范與方案
- 自來水管網(wǎng)知識培訓(xùn)課件
- 汽車購買中介合同范本
- 婚紗照簽單合同模板(3篇)
- 安全班隊(duì)會課件
- 2025年70周歲以上老年人三力測試題庫及答案
- 設(shè)備預(yù)防性維護(hù)知識培訓(xùn)課件
- 志愿者服務(wù)知識培訓(xùn)活動課件
- 非開挖污水管道修復(fù)工程監(jiān)理規(guī)劃
- 北京鐵路局面試題庫及答案
- JLPT考試真題及答案
評論
0/150
提交評論