2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025-2026學(xué)年呂梁市重點中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角是()A. B.C. D.2.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.3.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.4.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個 B.1個C.2個 D.3個5.命題任意圓的內(nèi)接四邊形是矩形,則為()A.每一個圓的內(nèi)接四邊形是矩形B.有的圓的內(nèi)接四邊形不是矩形C.所有圓的內(nèi)接四邊形不是矩形D.存在一個圓的內(nèi)接四邊形是矩形6.已知四棱錐,底面為平行四邊形,分別為,上的點,,設(shè),則向量用為基底表示為()A. B.C. D.7.設(shè)為等差數(shù)列的前項和,若,則的值為()A.14 B.28C.36 D.488.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.9.為了了解1200名學(xué)生對學(xué)校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.1210.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標(biāo)軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.11.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠(yuǎn)月點(離月面最遠(yuǎn)的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進(jìn)行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.8212.直線的傾斜角大小為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.14.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.15.已知雙曲線,的左、右焦點分別為、,且的焦點到漸近線的距離為1,直線與交于,兩點,為弦的中點,若為坐標(biāo)原點)的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形16.在正三棱柱中,,點P滿足,其中,,則下列說法中,正確的有_________(請?zhí)钊胨姓_說法的序號)①當(dāng)時,的周長為定值②當(dāng)時,三棱錐的體積為定值③當(dāng)時,有且僅有一個點P,使得④當(dāng)時,有且僅有一個點P,使得平面三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離18.(12分)(1)證明:;(2)已知:,,且,求證:.19.(12分)已知定點,動點與連線的斜率之積.(1)設(shè)動點的軌跡為,求的方程;(2)若是上關(guān)于軸對稱的兩個不同點,直線與軸分別交于點.試判斷以為直徑的圓是否過定點,如經(jīng)過,求出定點坐標(biāo);如不過定點,請說明理由.20.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于不同的兩點,已知點的坐標(biāo)為,若,求直線的方程21.(12分)已知橢圓的一個焦點坐標(biāo)為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,點P在橢圓C上,若的面積為,求點P的坐標(biāo)22.(10分)已知圓的圓心在直線上,且過點(1)求圓的方程;(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.2、B【解析】設(shè)公共焦點為,推導(dǎo)出,可得出,進(jìn)而可求得、的值.【詳解】設(shè)公共焦點為,則,則,即,故,即,,故選:B3、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.4、C【解析】由條件,可得,利用不等式的性質(zhì)和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因為,所以.因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號不成立),所以④正確.故選:C.5、B【解析】全稱命題的否定特稱命題,任意改為存在,把結(jié)論否定.【詳解】全稱量詞命題的否定是特稱命題,需要將全稱量詞換為存在量詞,答案A,C不符合題意,同時對結(jié)論進(jìn)行否定,所以:有的圓的內(nèi)接四邊形不是矩形,故選:B.6、D【解析】通過尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D7、D【解析】利用等差數(shù)列的前項和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因為為等差數(shù)列的前項和,所以故選:D【點睛】本題考查了等差數(shù)列的前項和公式的計算以及等差數(shù)列性質(zhì)的應(yīng)用,屬于較易題.8、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.9、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.10、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.11、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C12、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因為所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:14、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.15、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點的坐標(biāo),再求邊長,求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對稱性,不妨取點的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④16、②④【解析】①結(jié)合得到P在線段上,結(jié)合圖形可知不同位置下周長不同;②由線面平行得到點到平面距離不變,故體積為定值;③結(jié)合圖形得到不同位置下有,判斷出③錯誤;④結(jié)合圖形得到有唯一的點P,使得線面垂直.【詳解】由題意得:,,,所以P為正方形內(nèi)一點,①,當(dāng)時,,即,,所以P在線段上,所以周長為,如圖1所示,當(dāng)點P在處時,,故①錯誤;②,如圖2,當(dāng)時,即,即,,所以P在上,,因為∥BC,平面,平面,所以點P到平面距離不變,即h不變,故②正確;③,當(dāng)時,即,如圖3,M為中點,N為BC的中點,P是MN上一動點,易知當(dāng)時,點P與點N重合時,由于△ABC為等邊三角形,N為BC中點,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因為平面,則,當(dāng)時,點P與點M重合時,可證明出⊥平面,而平面,則,即,故③錯誤;④,當(dāng)時,即,如圖4所示,D為的中點,E為的中點,則P為DE上一動點,易知,若平面,只需即可,取的中點F,連接,又因為平面,所以,若,只需平面,即即可,如圖5,易知當(dāng)且僅當(dāng)點P與點E重合時,故只有一個點P符合要求,使得平面,故④正確.故選:②④【點睛】立體幾何的壓軸題,通常情況下要畫出圖形,利用線面平行,線面垂直及特殊點,特殊值進(jìn)行排除選項,或者用等體積法進(jìn)行轉(zhuǎn)化等思路進(jìn)行解決.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問1詳解】解:以為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的坐標(biāo)系則、、、、、、,所以,,設(shè)平面的一個法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問2詳解】解:設(shè)平面的一個法向量,,,由,即,令,得,,所以點到平面的距離為即到平面的距離為18、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當(dāng)且僅當(dāng)時,等號成立,故.19、(1);(2)以為直徑的圓過定點,定點坐標(biāo)為和.【解析】(1)設(shè)動點的坐標(biāo),利用斜率坐標(biāo)公式結(jié)合已知列式即可作答.(2)設(shè)上任意一點,求出點M,N的坐標(biāo),再求出以為直徑的圓的方程即可分析作答.【小問1詳解】設(shè)點,則直線PA,PB的斜率分別為:,,依題意,,化簡整理得:,所以的方程是:.【小問2詳解】由(1)知,令是上任意一點,則點,直線:,則點,直線:,則點,以MN為直徑的圓上任意一點,當(dāng)點Q與M,N都不重合時,,有,當(dāng)點Q與M,N之一重合時,也成立,因此,以MN為直徑的圓的方程為:,化簡整理得:,而,即,則以MN為直徑的圓的方程化為:,顯然當(dāng)時,恒有,即圓恒過兩個定點和,所以以為直徑的圓過定點,定點坐標(biāo)為和.【點睛】知識點睛:以點為直徑兩個端點的圓的方程是:.20、(1)(2)【解析】(1)由離心率公式以及橢圓的性質(zhì)列出方程組得出橢圓的方程;(2)聯(lián)立直線和橢圓方程,利用韋達(dá)定理得出點坐標(biāo),最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設(shè),,直線為由,得顯然,由韋達(dá)定理有:,則;所以,且,若,解得,所以21、(1)(2)或或或【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)三角形的面積列方程,化簡求得點的坐標(biāo).【小問1詳解】設(shè)橢圓C的焦距為,由題意有,得,,故橢圓C的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè)點P的坐標(biāo)為,由的面積為,有,得,有,得,故點P的坐標(biāo)為或或或22、(1);(2)或.【解析】(1)根據(jù)題意設(shè)圓心坐標(biāo)為,進(jìn)而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上,設(shè)所求圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論