2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題含解析_第1頁
2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題含解析_第2頁
2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題含解析_第3頁
2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題含解析_第4頁
2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆福建龍巖一中數(shù)學高二第一學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件2.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.23.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預防該疾病的效果,進行動物試驗,得到如下列聯(lián)表:患病未患病總計服用藥104555未服藥203050總計3075105下列說法正確的是()參考數(shù)據:,0.050.013.8416.635A.有95%的把握認為藥物有效B.有95%的把握認為藥物無效C.在犯錯誤的概率不超過0.05的前提下認為藥物無效D.在犯錯誤的概率不超過0.01的前提下認為藥物有效4.已知三角形三個頂點為、、,則邊上的高所在直線的方程為()A. B.C. D.5.如圖,點A的坐標為,點C的坐標為,函數(shù),若在矩形內隨機取一點,則此點取自陰影部分的概率等于()A. B.C. D.6.與直線平行,且經過點(2,3)的直線的方程為()A. B.C. D.7.在數(shù)列中,,,則()A. B.C. D.8.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.9.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉拋物面表面,經過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m10.入冬以來,梁老師準備了4個不同的烤火爐,全部分發(fā)給樓的三個辦公室(每層樓各有一個辦公室).1,2樓的老師反映辦公室有點冷,所以1,2樓的每個辦公室至少需要1個烤火隊,3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.8611.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)12.直線與直線的位置關系是()A.相交但不垂直 B.平行C.重合 D.垂直二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是___________.14.在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為___________海里.15.函數(shù)的導函數(shù)___________.16.四棱錐中,底面是一個平行四邊形,,,,則四棱錐體積為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)討論函數(shù)的單調性;(2)證明:對任意正整數(shù)n,18.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G的方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.19.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.20.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點.(1)證明:直線面DEF;(2)求二面角的余弦值.21.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值22.(10分)已知數(shù)列的前n項和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項公式;(2)若,數(shù)列的前項和為.求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.2、B【解析】直接利用空間向量垂直的坐標運算即可解決.【詳解】∵∴∴,解得,故選:B.3、A【解析】根據列聯(lián)表計算,對照臨界值即可得出結論【詳解】根據列聯(lián)表,計算,由臨界值表可知,有95%的把握認為藥物有效,A正確故選:A4、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.5、A【解析】分別由矩形面積公式與微積分幾何意義計算陰影部分和矩形部分的面積,最后由幾何概型概率計算公式計算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點取自陰影部分的概率等于,故選:A6、C【解析】由直線平行及直線所過的點,應用點斜式寫出直線方程即可.【詳解】與直線平行,且經過點(2,3)的直線的方程為,整理得故選:C7、A【解析】根據已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.8、B【解析】,得出到漸近線的距離為,由此可得的關系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B9、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.10、C【解析】運用分類計數(shù)原理,結合組合數(shù)定義進行求解即可.【詳解】當3樓不要烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要1個烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要2個烤火爐時,不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數(shù)為:,故選:C【點睛】關鍵點睛:運用分類計數(shù)原理是解題的關鍵.11、B【解析】由導數(shù)求得的最小值,由最小值非負可得的范圍【詳解】定義域是,,若,則在上恒成立,單調遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B12、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關系是重合.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】將分式不等式等價轉化為不等式組,求解即得.【詳解】原不等式等價于,解得,故答案為:.14、【解析】利用正弦定理求得甲驅逐艦與乙護衛(wèi)艦的距離.【詳解】,設甲乙距離,由正弦定理得.故答案為:15、【解析】利用導函數(shù)的乘法公式和復合函數(shù)求導法則進行求解【詳解】故答案為:16、【解析】計算,,得到底面,計算,,計算體積得到答案.【詳解】由,,所以底面,,故,體積為.故答案為:16.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關系,即可判定函數(shù)的單調性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調遞減,在單調遞增;當a≥0時,f(x)在單調遞增,在單調遞減.【小問2詳解】由(2)知當時,在,上遞減,,即,,,,2,3,,,,【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,本題的關鍵是令a=1,用已知函數(shù)的單調性構造,再令x=恰當?shù)乩脤?shù)求和進行解題18、(1);(2).【解析】(1)根據已知求出即得橢圓的方程;(2)設l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達定理,根據得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.19、(1)證明見解析;(2).【解析】建立空間直角坐標系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點,為軸,豎直向上為軸建立空間直角坐標系,利用向量法計算與平面的法向量的數(shù)量積為0即可得證;(2)分別計算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因為平面平面ABCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點,為軸,豎直向上為軸建立如圖所示的空間直角坐標系,則,設為平面的法向量,因為,則有,取,又因為,所以,因為平面,所以平面;【小問2詳解】解:分別設為平面和平面的法向量,因為,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.21、(1);(2)①;②證明見解析.【解析】(1)根據橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據相切求出直線的斜率,結合可得,進而應用弦長公式、點線距離公式及三角形面積公式求△面積的范圍,再逐個求解,,然后可證結論.【小問1詳解】由題意,解得,故橢圓C的方程為.【小問2詳解】設直線為,聯(lián)立得:,因為直線與橢圓C相切,則判別式,即,整理得,∴,故直線為,又,可得,設直線為,聯(lián)立方程組,解得,故Q為,聯(lián)立方程組,化簡得設,由得:,且,①,到直線的距離為,∴,令,∴.②由上,故,于是為定值.【點睛】直線與橢圓的相切問題一般是聯(lián)立方程,結合判別式為零求解;定值問題的求解一般結合目標式中的項,逐個求解,代入驗證即可.22、(1)證明見解析,(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論