2025-2026學年學易高一上數(shù)學期末檢測試題含解析_第1頁
2025-2026學年學易高一上數(shù)學期末檢測試題含解析_第2頁
2025-2026學年學易高一上數(shù)學期末檢測試題含解析_第3頁
2025-2026學年學易高一上數(shù)學期末檢測試題含解析_第4頁
2025-2026學年學易高一上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025-2026學年學易高一上數(shù)學期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用區(qū)間表示不超過的最大整數(shù),如,設,若方程有且只有3個實數(shù)根,則正實數(shù)的取值范圍為()A B.C. D.2.已知平面向量,,且,則實數(shù)的值為()A. B.C. D.3.已知圓錐的側面積展開圖是一個半圓,則其母線與底面半徑之比為A.1 B.C. D.24.函數(shù)是上的偶函數(shù),則的值是A. B.C. D.5.對于空間中的直線,以及平面,,下列說法正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則6.某國近日開展了大規(guī)模COVID-19核酸檢測,并將數(shù)據(jù)整理如圖所示,其中集合S表示()A.無癥狀感染者 B.發(fā)病者C.未感染者 D.輕癥感染者7.已知冪函數(shù)的圖像過點,則下列關于說法正確的是()A.奇函數(shù) B.偶函數(shù)C.定義域為 D.在單調遞減8.將函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心是A. B.C. D.9.已知函數(shù),函數(shù),若有兩個零點,則m的取值范圍是()A. B.C. D.10.函數(shù)滿足:,已知函數(shù)與的圖象共有4個交點,交點坐標分別為,,,,則:A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解為______12.直線與平行,則的值為_________.13.如圖,在直四棱柱中,當?shù)酌鍭BCD滿足條件___________時,有.(只需填寫一種正確條件即可)14.設為三個隨機事件,若與互斥,與對立,且,,則_____________15.函數(shù)是定義在上的奇函數(shù),當時,,則______16.函數(shù)的單調減區(qū)間是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在1,1上的奇函數(shù),且.(1)求m,n的值;(2)判斷在1,1上的單調性,并用定義證明;(3)設,若對任意的,總存在,使得成立,求實數(shù)k的值.18.(1)計算:.(2)化簡:.19.已知二次函數(shù),若不等式的解集為,且方程有兩個相等的實數(shù)根.(1)求的解析式;(2)若,成立,求實數(shù)m的取值范圍.20.已知函數(shù)(1)若的定義域為R,求a的取值范圍;21.已知函數(shù)是定義在上的偶函數(shù),當時,(1)求的解析式;(2)解不等式

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由方程的根與函數(shù)交點的個數(shù)問題,結合數(shù)形結合的數(shù)學思想方法,作圖觀察y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點時k的取值范圍,即可得解.【詳解】方程{x}+kx﹣1=0有且只有3個實數(shù)根等價于y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點,當0≤x<1時,{x}=x,當1≤x<2時,{x}=x﹣1,當2≤x<3時,{x}=x﹣2,當3≤x<4時,{x}=x﹣3,以此類推如上圖所示,實數(shù)k的取值范圍為:k,即實數(shù)k的取值范圍為:(,],故選A【點睛】本題考查了方程的根與函數(shù)交點的個數(shù)問題,數(shù)形結合的數(shù)學思想方法,屬中檔題2、C【解析】根據(jù)垂直向量坐標所滿足的條件計算即可【詳解】因為平面向量,,且,所以,解得故選:C3、D【解析】圓錐的側面展開圖為扇形,根據(jù)扇形的弧長即為圓錐的底面圓的周長可得母線與底面圓半徑間的關系【詳解】設圓錐的母線長為,底面圓的半徑為,由已知可得,所以,所以,即圓錐的母線與底面半徑之比為2.故選D【點睛】解答本題時要注意空間圖形和平面圖形間的轉化以及轉化過程中的等量關系,解題的關鍵是根據(jù)扇形的弧長等于圓錐底面圓的周長得到等量關系,屬于基礎題4、C【解析】分析:由奇偶性可得,化為,從而可得結果.詳解:∵是上的偶函數(shù),則,即,即成立,∴,又∵,∴.故選C點睛:本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性.5、D【解析】利用線面關系,面面關系的性質逐一判斷.【詳解】解:對于A選項,,可能異面,故A錯誤;對于B選項,可能有,故B錯誤;對于C選項,,的夾角不一定為90°,故C錯誤;故對D選項,因為,,故,因為,故,故D正確.故選:D.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.6、A【解析】由即可判斷S的含義.【詳解】解:由圖可知,集合S是集合A與集合B的交集,所以集合S表示:感染未發(fā)病者,即無癥狀感染者,故選:A.7、D【解析】設出冪函數(shù)的解析式,將所過點坐標代入,即可求出該函數(shù).再根據(jù)冪函數(shù)的性質的結論,選出正確選項.【詳解】設冪函數(shù)為,因為函數(shù)過點,所以,則,所以,該函數(shù)定義域為,則其既不是奇函數(shù)也不是偶函數(shù),且由可知,該冪函數(shù)在單調遞減.故選:D.8、A【解析】由函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍得到,向右平移個單位得到,將代入得,所以函數(shù)的一個對稱中心是,故選A9、A【解析】存在兩個零點,等價于與的圖像有兩個交點,數(shù)形結合求解.【詳解】存在兩個零點,等價于與的圖像有兩個交點,在同一直角坐標系中繪制兩個函數(shù)的圖像:由圖可知,當直線在處的函數(shù)值小于等于1,即可保證圖像有兩個交點,故:,解得:故選:A.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖像,利用數(shù)形結合的方法求解.10、C【解析】函數(shù)的圖象和的圖象都關于(0,2)對稱,從而可知4個交點兩兩關于點(0,2)對稱,即可求出的值【詳解】因為函數(shù)滿足:,所以的圖象關于(0,2)對稱,函數(shù),由于函數(shù)的圖象關于(0,0)對稱,故的圖象也關于(0,2)對稱,故.故答案為C.【點睛】若函數(shù)滿足,則函數(shù)的圖象關于點對稱二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)冪函數(shù)的性質,分類討論即可【詳解】將不等式轉化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此時無解;綜上,不等式的解集為:故答案為:12、【解析】根據(jù)兩直線平行得出實數(shù)滿足的等式與不等式,解出即可.【詳解】由于直線與平行,則,解得.故答案為:.【點睛】本題考查利用兩直線平行求參數(shù),考查運算求解能力,屬于基礎題.13、(答案不唯一)【解析】直四棱柱,是在上底面的投影,當時,可得,當然底面ABCD滿足的條件也就能寫出來了.【詳解】根據(jù)直四棱柱可得:∥,且,所以四邊形是矩形,所以∥,同理可證:∥,當時,可得:,且底面,而底面,所以,而,從而平面,因為平面,所以,所以當滿足題意.故答案為:.14、【解析】由與對立可求出,再由與互斥,可得求解.【詳解】與對立,,與互斥,故答案為:.15、11【解析】根據(jù)奇函數(shù)性質求出函數(shù)的解析式,然后逐層代入即可.【詳解】,,當時,,即,,,故答案為:11.16、##【解析】根據(jù)復合函數(shù)的單調性“同增異減”,即可求解.【詳解】令,根據(jù)復合函數(shù)單調性可知,內層函數(shù)在上單調遞減,在上單調遞增,外層函數(shù)在定義域上單調遞增,所以函數(shù)#在上單調遞減,在上單調遞增.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)在上遞增,證明見解析(3)【解析】(1)由為1,1上奇函數(shù)可得,再結合可求出m,n的值;(2)直接利用單調性的定義判斷即可,(3)由題意可得,而,然后分,和三種情況求解的最大值,使其最大值大于等于,解不等式可得結果【小問1詳解】依題意函數(shù)是定義在上的奇函數(shù),所以,∴,所以,經檢驗,該函數(shù)為奇函數(shù).【小問2詳解】在上遞增,證明如下:任取,其中,,所以,故在上遞增.【小問3詳解】由于對任意的,總存在,使得成立,所以.當,恒成立當時,在上遞增,,所以.當時,在上遞減,,所以.綜上所述,18、(1);(2)【解析】(1)根據(jù)分數(shù)指數(shù)冪及對數(shù)的運算法則計算可得;(2)利用誘導公式及特殊值的三角函數(shù)值計算可得;【詳解】解:(1)(2)19、(1);(2).【解析】(1)根據(jù)的解集為,可得1,2即為方程的兩根,根據(jù)韋達定理,可得b,c的表達式,根據(jù)有兩個相等的實數(shù)根.可得該方程,即可求得a的值,即可得答案;(2)由題意得使成立,則只需,利用基本不等式,即可求得答案.【詳解】(1)因為的解集為,所以1,2即為方程的兩根,由韋達定理得,且,解得,,又方程有兩個相等實數(shù)根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,則,,又,當且僅當,即x=2時等號成立,所以,使成立,等價為成立,所以.【點睛】已知解集求一元二次不等式參數(shù)時,關鍵是靈活應用韋達定理,進行求解,處理存在性問題時,需要,若處理恒成立問題時,需要,需認真區(qū)分問題,再進行解答,屬中檔題.20、(1)(2)【解析】(1)轉化為,可得答案;(2)轉化為時,利用基本不等式對求最值可得答案【小問1詳解】由題意得恒成立,得,解得,故a的取值范圍為【小問2詳解】由,得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論