八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(附答案)_第1頁
八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(附答案)_第2頁
八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(附答案)_第3頁
八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(附答案)_第4頁
八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(附答案)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題復(fù)習(xí)題(附答案)(7)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.已知三角形的兩邊分別為3、4,要使該三角形為直角三角形,則第三邊的長為()A. B. C.5或 D.3或42.將6個(gè)邊長是1的正方形無縫隙鋪成一個(gè)矩形,則這個(gè)矩形的對(duì)角線長等于()A. B. C.或者 D.或者3.如圖,在△ABC中,∠A=90°,P是BC上一點(diǎn),且DB=DC,過BC上一點(diǎn)P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,則PE+PF的長是()A. B.6 C. D.4.如圖,□ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,∠AEB=45°,BD=2,將△ABC沿AC所在直線翻折180°到其原來所在的同一平面內(nèi),若點(diǎn)B的落點(diǎn)記為B′,則DB′的長為()A.1 B. C. D.5.如圖中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10cm,正方形A的邊長為6cm、B的邊長為5cm、C的邊長為5cm,則正方形D的邊長為()A.3cm B.cm C.cm D.4cm6.直角三角形的面積為,斜邊上的中線為,則這個(gè)三角形周長為()A. B.C. D.7.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.728.如圖所示,用四個(gè)全等的直角三角形和一個(gè)小正方形拼成一個(gè)大正方形已知大正方形的面積為49,小正方形的面積為4.用,表示直角三角形的兩直角邊(),請(qǐng)仔細(xì)觀察圖案.下列關(guān)系式中不正確的是()A. B.C. D.9.如圖,在長方形紙片中,,.把長方形紙片沿直線折疊,點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長為()A. B. C. D.10.已知三角形的三邊長分別為a,b,c,且a+b=10,ab=18,c=8,則該三角形的形狀是()A.等腰三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形11.如圖,點(diǎn)的坐標(biāo)是,若點(diǎn)在軸上,且是等腰三角形,則點(diǎn)的坐標(biāo)不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)12.如圖,在△ABC,∠C=90°,AD平分∠BAC交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB,垂足恰好是邊AB的中點(diǎn)E,若AD=3cm,則BE的長為()A.cm B.4cm C.3cm D.6cm13.如圖,中,,,.設(shè)長是,下列關(guān)于的四種說法:①是無理數(shù);②可以用數(shù)軸上的一個(gè)點(diǎn)來表示;③是13的算術(shù)平方根;④.其中所有正確說法的序號(hào)是()A.①② B.①③C.①②③ D.②③④14.如圖是甲、乙兩張不同的矩形紙片,將它們分別沿著虛線剪開后,各自要拼一個(gè)與原來面積相等的正方形,則()A.甲、乙都可以 B.甲、乙都不可以C.甲不可以、乙可以 D.甲可以、乙不可以15.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對(duì)折后,點(diǎn)A恰好落在BC上的點(diǎn)D處,若CE=1,AB=4,則下列結(jié)論一定正確的個(gè)數(shù)是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE與△BDF的周長相等;A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)16.已知是的三邊,且滿足,則是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰三角形或直角三角形17.下列結(jié)論中,矩形具有而菱形不一定具有的性質(zhì)是()A.內(nèi)角和為360° B.對(duì)角線互相平分 C.對(duì)角線相等 D.對(duì)角線互相垂直18.如圖,在數(shù)軸上點(diǎn)所表示的數(shù)為,則的值為()A. B. C. D.19.在中,邊上的中線,則的面積為()A.6 B.7 C.8 D.920.已知,為正數(shù),且,如果以,的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為()A.5 B.25 C.7 D.1521.在四邊形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,則EDC的面積為()A.2﹣2 B.3﹣2 C.2﹣ D.﹣122.在Rt△ABC中,∠C=90°,AC=3,BC=4,則點(diǎn)C到AB的距離是()A. B. C. D.23.如圖,在四邊形ABCD中,,,,.分別以點(diǎn)A,C為圓心,大于長為半徑作弧,兩弧交于點(diǎn)E,作射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O是AC的中點(diǎn),則CD的長為()A. B.4 C.3 D.24.在中,,則△ABC是()A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形25.如圖,在等腰中,,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:①是等腰直角三角形;②四邊形CDFE不可能為正方形;③DE長度的最小值為4;④四邊形CDFE的面積保持不變;⑤△CDE面積的最大值為8.其中正確的結(jié)論是()A.①④⑤ B.③④⑤ C.①③④ D.①②③26.如圖,設(shè)正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個(gè)甲殼蟲同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲各爬行完第2017條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是()A.0 B.1 C. D.27.如圖,中,有一點(diǎn)在上移動(dòng).若,則的最小值為()A.8 B.8.8 C.9.8 D.1028.由下列條件不能判定△ABC為直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a(chǎn)=2,b=3,c=4 D.(b+c)(b-c)=a229.三個(gè)正方形的面積如圖,正方形A的面積為()A.6 B.36 C.64 D.830.A、B、C分別表示三個(gè)村莊,米,米,米,某社區(qū)擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在()A.AB的中點(diǎn) B.BC的中點(diǎn)C.AC的中點(diǎn) D.的平分線與AB的交點(diǎn)【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.C解析:C【分析】根據(jù)勾股定理和分類討論的方法可以求得第三邊的長,從而可以解答本題.【詳解】由題意可得,當(dāng)3和4為兩直線邊時(shí),第三邊為:=5,當(dāng)斜邊為4時(shí),則第三邊為:=,故選:C【點(diǎn)睛】本題考查勾股定理,解答本題的關(guān)鍵是明確題意,利用勾股定理和分類討論的數(shù)學(xué)思想解答.2.C解析:C【分析】如圖1或圖2所示,分類討論,利用勾股定理可得結(jié)論.【詳解】當(dāng)如圖1所示時(shí),AB=2,BC=3,∴AC=;當(dāng)如圖2所示時(shí),AB=1,BC=6,∴AC=;故選C.【點(diǎn)睛】本題主要考查圖形的拼接,數(shù)形結(jié)合,分類討論是解答此題的關(guān)鍵.3.C解析:C【解析】【分析】根據(jù)三角形的面積判斷出PE+PF的長等于AC的長,這樣就變成了求AC的長;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的長,再利用勾股定理就可以求出AC的長,也就是PE+PF的長.【詳解】∵△DCB為等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設(shè)AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=()2-(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點(diǎn)睛】本題考查勾股定理、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用面積法證明線段之間的關(guān)系,靈活運(yùn)用勾股定理解決問題,屬于中考??碱}型.4.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質(zhì)知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質(zhì)知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點(diǎn)睛】考查了平行四邊形的性質(zhì)以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5.B解析:B【解析】【分析】先求出SA、SB、SC的值,再根據(jù)勾股定理的幾何意義求出D的面積,從而求出正方形D的邊長.【詳解】解∵SA=6×6=36cm2,SB=5×5=25cm2,Sc=5×5=25cm2,又∵,∴36+25+25+SD=100,∴SD=14,∴正方形D的邊長為cm.故選:B.【點(diǎn)睛】本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關(guān)鍵.6.D解析:D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計(jì)算即可?!驹斀狻拷猓涸O(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個(gè)三角形周長為:,故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.7.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn),的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.8.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對(duì)公式進(jìn)行合適的變形即可判斷各個(gè)選項(xiàng)是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個(gè)直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯(cuò)誤.故選D.【點(diǎn)睛】本題考查勾股定理.在A、B、C選項(xiàng)的等式中需理解等式的各個(gè)部分表示的幾何意義,對(duì)于D選項(xiàng)是由A、C選項(xiàng)聯(lián)立得出的.9.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長度.10.B解析:B【解析】【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出,即可得到三角形的形狀.【詳解】∵a+b=10,ab=18,∴=(a+b)2-2ab=100-36=64,∵,c=8,∴=64,∴=,∴該三角形是直角三角形,故選:B.【點(diǎn)睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求出是解題的關(guān)鍵.11.D解析:D【詳解】解:(1)當(dāng)點(diǎn)P在x軸正半軸上,①以O(shè)A為腰時(shí),∵A的坐標(biāo)是(2,2),∴∠AOP=45°,OA=,∴P的坐標(biāo)是(4,0)或(,0);②以O(shè)A為底邊時(shí),∵點(diǎn)A的坐標(biāo)是(2,2),∴當(dāng)點(diǎn)P的坐標(biāo)為:(2,0)時(shí),OP=AP;(2)當(dāng)點(diǎn)P在x軸負(fù)半軸上,③以O(shè)A為腰時(shí),∵A的坐標(biāo)是(2,2),∴OA=,∴OA=AP=∴P的坐標(biāo)是(-,0).故選D.12.A解析:A【分析】先根據(jù)角平分線的性質(zhì)可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根據(jù)直角三角形的性質(zhì)即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點(diǎn),∴AC=AE=AB,所以,∠B=30°.∵DE為AB中線且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故選A.【點(diǎn)睛】本題考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),及勾股定理等知識(shí),熟練掌握全等三角形的判定與性質(zhì)是解答本題的關(guān)鍵.13.C解析:C【分析】根據(jù)勾股定理即可求出答案.【詳解】解:∵∠ACB=90°,∴在RtABC中,m=AB==,故①②③正確,∵m2=13,9<13<16,∴3<m<4,故④錯(cuò)誤,故選:C.【點(diǎn)睛】本題考查勾股定理及算術(shù)平方根、無理數(shù)的估算,解題的關(guān)鍵是熟練運(yùn)用勾股定理,本題屬于基礎(chǔ)題型.14.A解析:A【解析】試題分析:剪拼如下圖:乙故選A考點(diǎn):剪拼,面積不變性,二次方根15.D解析:D【分析】利用等腰直角三角形的相關(guān)性質(zhì)運(yùn)用勾股定理以及對(duì)應(yīng)角度的關(guān)系來推導(dǎo)對(duì)應(yīng)選項(xiàng)的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2,①正確;BD=4-2,②正確;由∠A=∠EDF=45°,則2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正確;△DCE的周長=CD+CE+DE=2+4,△BDF的周長=BD+BF+DF=BD+AB=4+4-2=4+2,④正確;故正確的選項(xiàng)有4個(gè),故選:D.【點(diǎn)睛】本題主要考查等腰直角三角形的相關(guān)性質(zhì)以及勾股定理的運(yùn)用,本題涉及的等腰直角三角形、翻折、勾股定理以及邊角關(guān)系,需要熟練地掌握對(duì)應(yīng)性質(zhì)以及靈活的運(yùn)用.16.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,進(jìn)而可得a=b或a2=b2+c2,進(jìn)而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點(diǎn)睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時(shí)注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.17.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對(duì)角線互相垂直;矩形四個(gè)角是直角,對(duì)角線相等,由此結(jié)合選項(xiàng)即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360°,故本選項(xiàng)錯(cuò)誤;B、對(duì)角互相平分,菱形、矩形都具有,故本選項(xiàng)錯(cuò)誤;C、對(duì)角線相等菱形不具有,而矩形具有,故本選項(xiàng)正確D、對(duì)角線互相垂直,菱形具有而矩形不具有,故本選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關(guān)鍵.18.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點(diǎn)A的坐標(biāo).【詳解】解:∴由圖可知:點(diǎn)A所表示的數(shù)為:故選:A【點(diǎn)睛】本題主要考查的就是數(shù)軸上點(diǎn)所表示的數(shù),屬于基礎(chǔ)題型.解決這個(gè)問題的關(guān)鍵就是求出斜邊的長度.在數(shù)軸上兩點(diǎn)之間的距離是指兩點(diǎn)所表示的數(shù)的差的絕對(duì)值.19.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB=6,∴CD=3,AB=6,∴CD=AD=DB,,,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點(diǎn)睛】本題考查三角形中位線的應(yīng)用,熟練運(yùn)用三角形的中線定義以及綜合分析、解答問題的能力,關(guān)鍵要懂得:在一個(gè)三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個(gè)直角三角形,通過等腰三角形的性質(zhì)和內(nèi)角和定理來證明一個(gè)三是直角三角形.20.C解析:C【分析】本題可根據(jù)兩個(gè)非負(fù)數(shù)相加和為0,則這兩個(gè)非負(fù)數(shù)的值均為0解出x、y的值,然后運(yùn)用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點(diǎn):本題綜合考查了勾股定理與非負(fù)數(shù)的性質(zhì)點(diǎn)評(píng):解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.21.C解析:C【分析】先過點(diǎn)E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其邊長,最后利用等腰直角三角形,求得EG的長,進(jìn)而得到△EDC的面積.【詳解】解:過點(diǎn)E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,在Rt△BCE和Rt△GCE中,∴Rt△BCE≌Rt△GCE,∴BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45°,∵AB//CD,∴∠ABD=45°,又∵∠A=90°,AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,∵△DEG是等腰直角三角形,∴EG=DG=2﹣,∴△EDC的面積=×DC×EG=×2×(2﹣)=2﹣.故選:C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì),等腰直角三角形的性質(zhì)與判定,全等三角形的判定與性質(zhì),以及勾股定理等知識(shí),解決問題的關(guān)鍵是作輔助線,構(gòu)造直角三角形EDG進(jìn)行求解.22.D解析:D【解析】在Rt△ABC中∠C=90°,AC=3,BC=4,根據(jù)勾股定理求得AB=5,設(shè)點(diǎn)C到AB的距離為h,即可得h×AB=AC×BC,即h×5=×3×4,解得h=,故選D.23.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出.再根據(jù)ASA證明,那么,等量代換得到,利用線段的和差關(guān)系求出.然后在直角中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,則.,.在與中,,,,,.在中,,,,.故選A.【點(diǎn)睛】本題考查了作圖﹣基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.24.D解析:D【分析】根據(jù)題意設(shè)出三邊分別為k、k、k,然后利用勾股定理的逆定理判定三角形為直角三角形,又有BC、AC邊相等,所以三角形為等腰直角三角形.【詳解】設(shè)BC、AC、AB分別為k,k,k,∵k2+k2=(k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故選D.【點(diǎn)睛】本題主要考查了直角三角形的判定,利用設(shè)k法與勾股定理證明三角形是直角三角形是難點(diǎn),也是解題的關(guān)鍵.25.A解析:A【分析】作常規(guī)輔助線連接CF,由SAS定理可證△CFE和△ADF全等,從而可證∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形;由割補(bǔ)法可知四邊形CDFE的面積保持不變;△DEF是等腰直角三角形DE=DF,當(dāng)DF與BC垂直,即DF最小時(shí),DE取最小值,△CDE最大的面積等于四邊形CDEF的面積減去△DEF的最小面積.【詳解】連接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.當(dāng)D.E分別為AC、BC中點(diǎn)時(shí),四邊形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四邊形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此當(dāng)DE最小時(shí),DF也最??;即當(dāng)DF⊥AC時(shí),DE最小,此時(shí)DF=BC=4.∴DE=DF=4;當(dāng)△CEF面積最大時(shí),此時(shí)△DEF的面積最小.此時(shí)S△CEF=S四邊形CEFD?S△DEF=S△AFC?S△DEF=16?8=8,則結(jié)論正確的是①④⑤.故選A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),等腰直角三角形性質(zhì).要證明線段或者角相等,一般證明它們所在三角形全等,如果不存在三角形可作輔助線解決問題.26.D解析:D【分析】先確定黑、白兩個(gè)甲殼蟲各爬行完第2017條棱分別停止的點(diǎn),再根據(jù)停止點(diǎn)確定它們之間的距離.【詳解】根據(jù)題意可知黑甲殼蟲爬行一圈的路線是AA1→A1D1→D1C1→C1C→CB→BA,回到起點(diǎn).乙甲殼蟲爬行一圈的路線是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判斷兩個(gè)甲殼蟲爬行一圈都是6條棱,因?yàn)?017÷6=336…1,所以黑、白兩個(gè)甲殼蟲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論