七年級數學下冊期末幾何壓軸題試卷及答案培優(yōu)試卷_第1頁
七年級數學下冊期末幾何壓軸題試卷及答案培優(yōu)試卷_第2頁
七年級數學下冊期末幾何壓軸題試卷及答案培優(yōu)試卷_第3頁
七年級數學下冊期末幾何壓軸題試卷及答案培優(yōu)試卷_第4頁
七年級數學下冊期末幾何壓軸題試卷及答案培優(yōu)試卷_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.如圖,A點的坐標為(0,3),B點的坐標為(﹣3,0),D為x軸上的一個動點且不與B,O重合,將線段AD繞點A逆時針旋轉90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點M.(1)如圖,當點D在線段OB的延長線上時,①若D點的坐標為(﹣5,0),求點E的坐標.②求證:M為BE的中點.③探究:若在點D運動的過程中,的值是否是定值?如果是,請求出這個定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數量關系(不需要說明理由).2.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據圖1填空:∠1=°,∠2=°;(2)現把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數;②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.3.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數量關系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數量關系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數;(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數.4.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數為,試求的度數(用含的代數式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數為,試求的度數(用含的代數式表示);②若,的度數比的度數大,試計算的度數.5.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結論?請直接寫出結論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數為.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數量關系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.對數運算是高中常用的一種重要運算,它的定義為:如果ax=N(a>0,且a≠1),那么數x叫做以a為底N的對數,記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數叫做常用對數,此時log10N可記為lgN.當a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)8.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數的小數點每向右移動______位,其算術平方根的小數點向______移動______位.(2)已知,,則_____;______.(3),,,……小數點的變化規(guī)律是_______________________.(4)已知,,則______.9.數學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據定義,填空:_________,__________.②若有如下運算性質:.根據運算性質填空,填空:若,則__________;___________;③下表中與數x對應的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.10.我們知道,任意一個正整數n都可以進行這樣的分解:(p,q是正整數,且),在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(24)=;(2)如果一個兩位正整數t,其個位數字是a,十位數字為,交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為36,那么我們稱這個數為“和諧數”,求所有“和諧數”;(3)在(2)所得“和諧數”中,求F(t)的最大值.11.若一個四位數t的前兩位數字相同且各位數字均不為0,則稱這個數為“前介數”;若把這個數的個位數字放到前三位數字組成的數的前面組成一個新的四位數,則稱這個新的四位數為“中介數”;記一個“前介數”t與它的“中介數”的差為P(t).例如,5536前兩位數字相同,所以5536為“前介數”;則6553就為它的“中介數”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數”t,P(t)一定能被9整除.(3)若一個千位數字為2的“前介數”t能被6整除,它的“中介數”能被2整除,請求出滿足條件的P(t)的最大值.12.我們知道,正整數按照能否被2整除可以分成兩類:正奇數和正偶數,小華受此啟發(fā),按照一個正整數被3除的余數把正整數分成了三類:如果一個正整數被3除余數為1,則這個正整數屬于A類,例如1,4,7等;如果一個正整數被3除余數為2,則這個正整數屬于B類,例如2,5,8等;如果一個正整數被3整除,則這個正整數屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數中任取兩個數,則它們的和屬于類(填A,B或C);②從A、B類數中任取一數,則它們的和屬于類(填A,B或C);③從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們都加起來,則最后的結果屬于類(填A,B或C);(3)從A類數中任意取出m個數,從B類數中任意取出n個數,把它們都加起來,若最后的結果屬于C類,則下列關于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.13.如圖①,在平面直角坐標系中,點,,其中,是16的算術平方根,,線段由線段平移所得,并且點與點A對應,點與點對應.(1)點A的坐標為;點的坐標為;點的坐標為;(2)如圖②,是線段上不同于的任意一點,求證:;(3)如圖③,若點滿足,點是線段OA上一動點(與點、A不重合),連交于點,在點運動的過程中,是否總成立?請說明理由.14.直線AB∥CD,點P為平面內一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數;(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數量關系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數量關系,并說明理由.15.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.16.對,定義一種新的運算,規(guī)定:(其中).已知,.(1)求、的值;(2)若,解不等式組.17.(了解概念)在平面直角坐標系中,若,式子的值就叫做線段的“勾股距”,記作.同時,我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運用)在平面直角坐標系中,.(1)線段的“勾股距”;(2)若點在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點在軸上,是“等距三角形”,請直接寫出的取值范圍.18.在平面直角坐標系中,點,的坐標分別為,,現將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.19.兩個兩位數的和是68,在較大的兩位數的右邊接著寫較小的兩位數,得到一個四位數;在較大的兩位數的左邊寫上較小的兩位數,也得到一個四位數.已知前一個四位數比后一個四位數大990.若設較大的兩位數為x,較小的兩位數為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數.20.閱讀下列材料,解答下面的問題:我們知道方程有無數個解,但在實際生活中我們往往只需求出其正整數解.例:由,得:,(x、y為正整數)∴,則有.又為正整數,則為正整數.由2與3互質,可知:x為3的倍數,從而x=3,代入∴2x+3y=12的正整數解為問題:(1)請你寫出方程的一組正整數解:.(2)若為自然數,則滿足條件的x值為.(3)七年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?21.甲從A地出發(fā)步行到B地,乙同時從B地步行出發(fā)至A地,2小時后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時.若設甲剛出發(fā)時的速度為a千米/小時,乙剛出發(fā)的速度為b千米/小時.(1)A、B兩地的距離可以表示為千米(用含a,b的代數式表示);(2)甲從A到B所用的時間是:小時(用含a,b的代數式表示);乙從B到A所用的時間是:小時(用含a,b的代數式表示).(3)若當甲到達B地后立刻按原路向A返行,當乙到達A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時36分鐘又再次相遇,請問AB兩地的距離為多少?22.如圖,平面直角坐標系中,已知點A(a,0),B(0,b),其中a,b滿足.將點B向右平移24個單位長度得到點C.點D,E分別為線段BC,OA上一動點,點D從點C以2個單位長度/秒的速度向點B運動,同時點E從點O以3個單位長度/秒的速度向點A運動,在D,E運動的過程中,DE交四邊形BOAC的對角線OC于點F.設運動的時間為t秒(0<t<10),四邊形BOED的面積記為S四邊形BOED(以下面積的表示方式相同).(1)求點A和點C的坐標;(2)若S四邊形BOED≥S四邊形ACDE,求t的取值范圍;(3)求證:在D,E運動的過程中,S△OEF>S△DCF總成立.23.若任意一個代數式,在給定的范圍內求得的最大值和最小值恰好也在該范圍內,則稱這個代數式是這個范圍的“湘一代數式”.例如:關于x的代數式,當1x1時,代數式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內,則稱代數式是1x1的“湘一代數式”.(1)若關于的代數式,當時,取得的最大值為,最小值為,所以代數式(填“是”或“不是”)的“湘一代數式”.(2)若關于的代數式是的“湘一代數式”,求a的最大值與最小值.(3)若關于的代數式是的“湘一代數式”,求m的取值范圍.24.某小區(qū)準備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.25.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數約20次,他采取哪種購票方式比較合算?(3)小明根據自己進入拓展中心的次數,購買了A類年票,請問他一年中進入該中心不低于多少次?26.材料1:我們把形如(、、為常數)的方程叫二元一次方程.若、、為整數,則稱二元一次方程為整系數方程.若是,的最大公約數的整倍數,則方程有整數解.例如方程都有整數解;反過來也成立.方程都沒有整數解,因為6,3的最大公約數是3,而10不是3的整倍數;4,2的最大公約數是2,而1不是2的整倍數.材料2:求方程的正整數解.解:由已知得:……①設(為整數),則……②把②代入①得:.所以方程組的解為,根據題意得:.解不等式組得0<<.所以的整數解是1,2,3.所以方程的正整數解是:,,.根據以上材料回答下列問題:(1)下列方程中:①,②,③,④,⑤,⑥.沒有整數解的方程是(填方程前面的編號);(2)仿照上面的方法,求方程的正整數解;(3)若要把一根長30的鋼絲截成2長和3長兩種規(guī)格的鋼絲(兩種規(guī)格都要有),問怎樣截才不浪費材料?你有幾種不同的截法?(直接寫出截法,不要求解題過程)27.如圖①,在平直角坐標系中,△ABO的三個頂點為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點C.(1)求出A,B兩點的坐標;(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點的對應點落在x軸的正半軸上時,此時A點的對應點為,記△的面積為S,若24<S<32,求點的橫坐標的取值范圍.28.如圖1,點是第二象限內一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數:(注:三角形三個內角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.29.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán)燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉動的速度是度/秒,燈轉動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據相關信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉動24秒,燈的光射線才開始轉動,在燈的光射線到達之前,燈轉動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉動照射,在燈的光射線到達之前,若兩燈射出的光射線交于點,過點作交于點,則在轉動的過程中,與間的數量關系是否發(fā)生變化?若不變,請求出這兩角間的數量關系;若改變,請求出各角的取值范圍.30.對,定義一種新的運算,規(guī)定:(其中).(1)若已知,,則_________.(2)已知,.求,的值;(3)在(2)問的基礎上,若關于正數的不等式組恰好有2個整數解,求的取值范圍.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)①E(3,﹣2)②見解析;③,理由見解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過點E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結論.②證明△BOM≌△EHM(AAS)可得結論.③是定值,證明△BOM≌△EHM可得結論.(2)根據點D在點B左側和右側分類討論,分別畫出對應的圖形,根據全等三角形的判定及性質即可分別求出結論.【詳解】解:(1)①過點E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結論:OA+OD=2AM或OA﹣OD=2AM.理由:當點D在點B左側時,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當點D在點B右側時,過點E作EH⊥y軸于點H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點睛】此題考查的是全等三角形的判定及性質、旋轉的性質和平面直角坐標系,掌握全等三角形的判定及性質、旋轉的性質和點的坐標與線段長度的關系是解決此題的關鍵.2.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據鄰補角的定義和平行線的性質解答;(2)①根據鄰補角的定義求出∠ABE,再根據兩直線平行,同位角相等可得∠1=∠ABE,根據兩直線平行,同旁內角互補求出∠BCG,然后根據周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據平行線的性質可求解;過F作FH∥AB,易得FH∥AB∥CD,根據平行線的性質可求解;(2)根據(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作平行線的輔助線是解題的關鍵.4.(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據平角的定義求解即可;(2)①由(1)知,,根據平行線的性質得到,再由折疊的性質及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據條件和折疊的性質得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數比的度數大,,,,.【點睛】此題考查了平行線的性質,屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內錯角相等”及折疊的性質是解題的關鍵.5.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質與判定,屬于基礎題,關鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質得到,等量代換得出,即可根據“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據平行線的性質及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質,熟記平行線的判定與性質及作出合理的輔助線是解題的關鍵.7.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據對數的定義,得出x2=4,求解即可;(Ⅱ)根據對數的定義求解即;;(Ⅲ)根據loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點睛】本題主要考查同底數冪的乘法,有理數的乘方,是一道關于新定義運算的題目,解答本題的關鍵是理解給出的對數的定義.8.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數的小數點向右(左)移三位,其立方根的小數點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結果;(3)歸納總結得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結果.【詳解】解:(1),,,……,,,……由此可見,被開方數的小數點每向右移動兩位,其算術平方根的小數點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數點的變化規(guī)律是:被開方數的小數點向右(左)移三位,其立方根的小數點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術平方根,弄清題中的規(guī)律是解本題的關鍵.9.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據定義可得:f(10b)=b,即可求得結論;②根據運算性質:f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據5=,假設f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據運算性質,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應的f(x)是錯誤的,與題設矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應的f(x)是錯誤的,與題設矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應值是錯誤的,應改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應用,新定義運算等,解題的關鍵是深刻理解所給出的定義或規(guī)則,將它們轉化為我們所熟悉的運算.10.(1),(2)所以和諧數為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據題意,按照新定義的法則計算即可.(2)根據新定義的”和諧數”定義,將數用a,b表示列出式子解出即可.(3)根據(2)中計算的結果求出最大即可.【詳解】解:(1)F(13)=,F(24)=;(2)原兩位數可表示為新兩位數可表示為∴∴∴∴∴(且b為正整數)∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數為15,26,37,48,59(3)所有“和諧數”中,F(t)的最大值是.【點睛】本題為新定義的題型,關鍵在于讀懂題意,按照規(guī)定解題.11.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據“前介數”t與它的“中介數”的差為P(t)的定義求解即可;(2)設“前介數”為且a、b、c均不為0的整數,即1a、b、c,根據定義得到P(t)=,則P(t)一定能被9整除;(3)設“前介數”為,根據題意得到能被3整除,且b只能取2,4,6,8中的其中一個數;對應的“中介數”是,得到a只能取2,4,6,8中的其中一個數,計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數”,其對應的“中介數”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數”,其對應的“中介數”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設“前介數”為且a、b、c均為不為0的整數,即1a、b、c,∴,又對應的“中介數”是,∴P(t)=,∵a、b、c均不為0的整數,∴為整數,∴P(t)一定能被9整除;(3)證明:設“前介數”為且即1a、b,a、b均為不為0的整數,∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數,且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數,又對應的“中介數”是,且該“中介數”能被2整除,∴為偶數,又1,∴a只能取2,4,6,8中的其中一個數,∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據新定義,表示出“前介數”,與其對應的“中介數”是求解本題的關鍵.本題中運用到的分類討論思想是重要一種數學解題思想方法.12.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結合計算結果即可進行判斷;(2)①從A類數中任取兩個數進行計算,即可求解;②從A、B兩類數中任取兩個數進行計算,即可求解;③根據題意,從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們的余數相加,再除以3,即可得到答案;(3)根據m,n的余數之和,舉例,觀察即可判斷.【詳解】解:(1)根據題意,∵,∴2020被3除余數為1,屬于A類;故答案為:A.(2)①從A類數中任取兩個數,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數的和被3除余數為2,則它們的和屬于B類;②從A、B類數中任取一數,與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數中任取一數,則它們的和屬于C類;③從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們的余數相加,則,∴,∴余數為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數中任意取出m個數,從B類數中任意取出n個數,余數之和為:m×1+n×2=m+2n,∵最后的結果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數的除法,解題的關鍵是熟練掌握新定義進行解答.13.(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據算術平方根、立方根得、;再根據直角坐標系、平移的性質分析,即可得到答案;(2)根據平移的性質,得;根據平行線性質,分別推導得,,從而完成證明;(3)結合題意,根據平行線的性質,推導得、;結合(2)的結論,通過計算即可完成證明.【詳解】(1)連接∵是16的算術平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點與點A對應,點與點對應∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結論得:,∵,∴∴∵∴∴∴在點運動的過程中,總成立.【點睛】本題考查了算術平方根、立方根、平行線、平移、直角坐標系的知識;解題的關鍵是熟練掌握直角坐標系、平移、平行線的性質,從而完成求解.14.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是作出平行線構造內錯角相等計算.15.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.16.(1);(2)【分析】(1)先根據規(guī)定的新運算列出關于m、n的方程組,再解之即可;(2)由a>0得出2a>a-1,-a-1<-a,根據新定義列出關于a的不等式組,解之即可.【詳解】解:(1)由題意,得:,解得;(2)∵a>0,∴2a>a,∴2a>a-1,-a<-a,∴-a-1<-a,∴,解不等式①,得:a<1,解不等式②,得:a≥,∴不等式組的解集為≤a<1.【點睛】本題考查了解二元一次方程組和一元一次不等式組,正確求出每一個不等式解集是基礎,根據新定義列出相應的方程組和不等式組是解答此題的關鍵.17.(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據兩點之間的直角距離的定義,結合O、P兩點的坐標即可得出結論;(2)根據兩點之間的直角距離的定義,用含x、y的代數式表示出來d(O,Q)=4,結合點Q(x,y)在第一象限,即可得出結論;(3)由點N在直線y=x+3上,設出點N的坐標為(m,m+3),通過尋找d(M,N)的最小值,得出點M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點C在x軸上時,點C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當m<2時,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當2≤m<4時,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當m≥4時,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時,△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時,m的取值范圍為:m≥4.【點睛】本題考查坐標與圖形的性質,關鍵是對“勾股距”和“等距三角形”新概念的理解,運用“勾股距”和“等距三角形”解題.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據點的平移規(guī)律,即可得到對應點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據相關內容解題是關鍵.19.(1)C;(2)39和29【分析】(1)首先設較大的兩位數為,較小的兩位數為,根據題意可得等量關系:①兩個兩位數的和為68,②比大990,根據等量關系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設較大的兩位數為,較小的兩位數為,根據題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數分別是39和29.【點睛】此題主要考查了由實際問題抽象出二元一次方程組和解二元一次方程組,關鍵是弄清題目意思,表示出“較小的兩位數寫在較大的兩位數的右邊,得到一個四位數為”,把較小的兩位數寫在較大的兩位數的左邊,得到另一個四位數為.20.(1)方程的正整數解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個:x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價為3元的筆記本5本,單價為5元的鋼筆4支;或購買單價為3元的筆記本10本,單價為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,由題意得:3x+5y=35此方程的正整數解為有兩種購買方案:方案一:購買單價為3元的筆記本5個,購買單價為5元的鋼筆4支.方案二:購買單價為3元的筆記本10個,購買單價為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(3)設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,根據題意列二元一次方程,去正整數解求值21.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根據兩地間的距離=兩人的速度之和×第一次相遇所需時間,即可得出結論;(2)利用時間=路程÷速度結合2小時后第一次相遇,即可得出結論;(3)設AB兩地的距離為S千米,根據路程=速度×時間,即可得出關于(a+b),S的二元一次方程組(此處將a+b當成一個整體),解之即可得出結論.【詳解】(1)A、B兩地的距離可以表示為2(a+b)千米.故答案為:2(a+b).(2)甲乙相遇時,甲已經走了千米,乙已經走了千米,根據相遇后他們的速度都提高了1千米/小時,得甲還需小時到達B地,乙還需小時到達A地,所以甲從A到B所用的時間為(2+)小時,乙從B到A所用的時間為(2+)小時.故答案為:(2+);(2+).(3)設AB兩地的距離為S千米,3小時36分鐘=小時.依題意,得:,令x=a+b,則原方程變形為,解得:.答:AB兩地的距離為36千米.【點睛】本題考查了列代數式以及二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.22.(1)A(30,0),C(24,7);(2)≤t<10;(3)見解析【分析】(1)利用非負數的性質求出a=30,b=7,得出A,B的坐標,由平移的性質可得出答案;(2)由題意得出CD=2t,則BD=24﹣2t,OE=3t,根據梯形的面積公式得出S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),則可得出關于t的不等式,解不等式可得出答案;(3)由題意可得出S△OEF﹣S△DCF=3.5t,根據t>0則可得出結論.【詳解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵點B向右平移24個單位長度得到點C,∴C(24,7).(2)解:由題意得,CD=2t,則BD=24﹣2t,OE=3t,∴S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),∵S四邊形BOED≥S四邊形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)證明:∵S△OEF﹣S△DCF=S四邊形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【點睛】本題是四邊形綜合題,考查了非負數的性質,平移的性質,坐標與圖形的性質,梯形的面積,解一元一次不等式,解二元一次方程組,解題的關鍵學會利用參數解決問題,屬于中考??碱}型.23.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當時,的最大值與最小值,再根據定義判斷即可;(2)當時,得分<,分別求解在內時的最大值與最小值,再列不等式組即可得到答案;(3)當時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當時,取最大值,當時,取最小值所以代數式是的“湘一代數式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數式”,當時,的最大值是最小值是當時,當時,取最小值當時,取最大值,解得:綜上:的取值范圍是:【點睛】本題考查的是新定義情境下的不等式或不等式組的應用,理解定義列不等式(組)是解題的關鍵.24.(1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.5萬元;(2)一共2種建造方案;(3)當地上建39個車位地下建21個車位投資最少,金額為14.4萬元.【分析】(1)設新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,根據等量關系可列出方程組,解出即可得出答案.(2)設新建地上停車位m個,則地下停車位(60-m)個,根據投資金額超過14萬元而不超過15萬元,可得出不等式組,解出即可得出答案.(3)將m=38和m=39分別求得投資金額,然后比較大小即可得到答案.【詳解】解:(1)設新建一個地上停車位需萬元,新建一個地下停車位需萬元,由題意得:,解得,故新建一個地上停車位需萬元,新建一個地下停車位需萬元.(2)設新建個地上停車位,由題意得:,解得,因為為整數,所以或,對應的或,故一共種建造方案.(3)當時,投資(萬元),當時,投資(萬元),故當地上建個車位地下建個車位投資最少,金額為萬元.【點睛】本題考查了一元一次不等式組及二元一次方程組的應用,解答本題的關鍵是仔細審題,將實際問題轉化為數學方程或不等式的思想進行求解,有一定難度.25.(1)應該購買B類年票,理由見解析;(2)應該購買B類年票,理由見解析;(3)小明一年中進入拓展中心不低于30次【分析】(1)因為80元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數更多即可.(2)本題根據進入中心的次數,分別計算小亮直接購票、購買A類年票、購買B類年票所消費的總金額,最后比較總花費大小即可.(3)小明選擇購買A類年票,說明A類年票更為劃算,故需滿足直接購票與購買B類年票所花費的金額不低于120元,最后列不等式求解即可.【詳解】(1)由于預算限制,小麗不可能買A類年票;若直接購票,可以進中心次;若購買B類年票,可進中心次,所以應該購買B類年票.(2)若直接購買門票,需花費元;若購買A類年票,需花費120元;若購買B類年票,需花費元;所以應該購買B類年票.(3)設小明每年進拓展中心約x次,根據題意列出不等式組:,解得,故.所以小明一年中進入拓展中心不低于30次.【點睛】本題考查實際問題以及不等式,解題關鍵在于對題目的理解,此類型題目需要分類討論做對比,其次需要從實際問題背景抽離數學關系,最后注意計算仔細即可.26.(1)①⑥;(2),,;(3)有四種不同的截法不浪費材料,分別為2長的鋼絲12根,3長的鋼絲2根;或2長的鋼絲9根,3長的鋼絲4根;或2長的鋼絲6根,3長的鋼絲6根;或2長的鋼絲3根,3長的鋼絲8根【分析】(1)依據題中給出的判斷方法進行判斷,先找出最大公約數,然后再看能否整除c,從而來判斷是否有整數解;(2)依據材料2的解題過程,即可求得結果;(3)根據題意,設2長的鋼絲為根,3長的鋼絲為根(為正整數).則可得關于x,y的二元一次方程,利用材料2的求解方法,求得此方程的整數解,即可得出結論.【詳解】解:(1)①,因為3,9的最大公約數是3,而11不是3的整倍數,所以此方程沒有整數解;②,因為15,5的最大公約數是5,而70是5的整倍數,所以此方程有整數解;③,因為6,3的最大公約數是3,而111是3的整倍數,所以此方程有整數解;④,因為27,9的最大公約數是9,而99是9的整倍數,所以此方程有整數解;⑤,因為91,26的最大公約數是13,而169是13的整倍數,所以此方程有整數解;⑥,因為22,121的最大公約數是11,而324不是11的整倍數,所以此方程沒有整數解;故答案為:①⑥.(2)由已知得:.①設(為整數),則.②把②代入①得:.所以方程組的解為.根據題意得:,解不等式組得:<<.所以的整數解是-2,-1,0.故原方程所有的正整數解為:,,.(3)設2長的鋼絲為根,3長的鋼絲為根(為正整數).根據題意得:.所以.設(為整數),則.∴.根據題意得:,解不等式組得:.所以的整數解是1,2,3,4.故所有的正整數解為:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論