(完整版)初一數(shù)學下冊期末壓軸題試卷(含答案)_第1頁
(完整版)初一數(shù)學下冊期末壓軸題試卷(含答案)_第2頁
(完整版)初一數(shù)學下冊期末壓軸題試卷(含答案)_第3頁
(完整版)初一數(shù)學下冊期末壓軸題試卷(含答案)_第4頁
(完整版)初一數(shù)學下冊期末壓軸題試卷(含答案)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

一、解答題1.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當?shù)拿娣e是的面積的3倍時,求點的坐標;(3)設,,,判斷、、之間的數(shù)量關系,并說明理由.2.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.3.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內(nèi)容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.4.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關系是;(2)如圖2,若點G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關系,并證明你的結(jié)論;(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點M1和點N1時,作∠PM1B的角平分線M1Q與射線FM相交于點Q,問在旋轉(zhuǎn)的過程中的值是否改變?若不變,請求出其值;若變化,請說明理由.5.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.閱讀理解:計算×﹣×時,若把與分別各看著一個整體,再利用分配律進行運算,可以大大簡化難度.過程如下:解:設為A,為B,則原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.請用上面方法計算:①×-×②-.8.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數(shù))(3)求9.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:10.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.11.閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.12.閱讀材料:求的值.解:設①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.13.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數(shù);②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標14.如圖,已知//,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.(1)當時,的度數(shù)是_______;(2)當,求的度數(shù)(用的代數(shù)式表示);(3)當點運動時,與的度數(shù)之比是否隨點的運動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當點運動到使時,請直接寫出的度數(shù).15.在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.(1)平移線段到線段,使點的對應點為,點的對應點為,若點的坐標為,求點的坐標;(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(nèi)(與對應,與對應),連接如圖2所示.若表示△BCD的面積),求點、的坐標;(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標;若不存在,請說明理由.16.我們定義,關于同一個未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關系,是的“子式”.(1)若關于的不等式,,請問與是否存在“雅含”關系,若存在,請說明誰是誰的“子式”;(2)已知關于的不等式,,若與存在“雅含”關系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關于的不等式,,請分析是否存在,使得與存在“雅含”關系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.如圖,在平面直角坐標系中,直線與x軸交于點,與y軸交于點,且(1)求;(2)若為直線上一點.①的面積不大于面積的,求P點橫坐標x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點,若的面積為6,請直接寫出m的值.18.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應,點O與點C對應,a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.19.學校將20××年入學的學生按入學年份、年級、班級、班內(nèi)序號的順序給每一位學生編號,如2015年入學的8年級3班的46號學生的編號為15080346.張山同學模仿二維碼的方式給學生編號設計了一套身份識別系統(tǒng),在5×5的正方形風格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數(shù)字,A5表示編號的個位數(shù)字.①圖1是張山同學的身份識別圖案,請直接寫出張山同學的編號;②請在圖2中畫出2018年入學的9年級5班的39號同學的身份識別圖案;(2)張山同學又設計了一套信息加密系統(tǒng),其中A1表示入學年份加8,A2表示所在年級的數(shù)減6再加上所在班級的數(shù),A3表示所在年級的數(shù)乘2后減3再減所在班級的數(shù),將編號(班內(nèi)序號)的末兩位單列出來,作為一個兩位數(shù),個位與十位數(shù)字對換后再加2,所得結(jié)果的十位數(shù)字用A4表示、個位數(shù)字用A5表示.例如:2018年9年級5班的39號同學,其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學加密后的身份識別圖案,請求出李思同學的編號.20.五一節(jié)前,某商店擬購進A、B兩種品牌的電風扇進行銷售,已知購進3臺A種品牌電風扇所需費用與購進2臺B種品牌電風扇所需費用相同,購進1臺A種品牌電風扇與2臺B種品牌電風扇共需費用400元.(1)求A、B兩種品牌電風扇每臺的進價分別是多少元?(2)銷售時,該商店將A種品牌電風扇定價為180元/臺,B種品牌電風扇定價為250元/臺,商店擬用1000元購進這兩種風扇(1000元剛好全部用完),為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用哪種進貨方案?21.兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大990.若設較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數(shù).22.如圖①,在平面直角坐標系中,點A在x軸上,直線OC上所有的點坐標,都是二元一次方程的解,直線AC上所有的點坐標,都是二元一次方程的解,過C作x軸的平行線,交y軸與點B.(1)求點A、B、C的坐標;(2)如圖②,點M、N分別為線段BC,OA上的兩個動點,點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,設運動時間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大?。?3.七年(1)(2)兩班各40人參加垃圾分類知識競賽,規(guī)則如圖.比賽中,所有同學均按要求一對一連線,無多連、少連.(1)分數(shù)5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯,其余成員中,滿分人數(shù)是未滿分人數(shù)的2倍;七年(2)班所有人都得分,最低分人數(shù)的2倍與其他未滿分人數(shù)之和等于滿分人數(shù).①問(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,問哪個班的總分高?24.如圖,在平面直角坐標系中,點為坐標原點,點的坐標為,點的坐標為,其中是二元一次方程組的解,過點作軸的平行線交軸于點.(1)求點的坐標;(2)動點從點出發(fā),以每秒個單位長度的速度沿射線的方向運動,連接,設點的運動時間為秒,三角形的面積為,請用含的式子表示(不用寫出相應的的取值范圍);(3)在(2)的條件下,在動點從點出發(fā)的同時,動點從點出發(fā)以每秒個單位長度的速度沿線段的方向運動.過點作直線的垂線,點為垂足;過點作直線的垂線,點為垂足.當時,求的值.25.某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.(1)若現(xiàn)有A型板材150張,B型板材300張,可制作豎式和橫式兩種無蓋箱子各多少個?(2)若該工廠準備用不超過24000元資金去購買A、B兩種型號板材,制作豎式、橫式箱子共100個,已知A型板材每張20元,B型板材每張60元,問最多可以制作豎式箱子多少個?(3)若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材(不計損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10個,且材料恰好用完,則最多可以制作豎式箱子多少個?26.使方程(組)與不等式(組)同時成立的末知數(shù)的值稱為此方程(組)和不等式(組)的“理想解”.例:已知方程2x﹣3=1與不等式x+3>0,當x=2時,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同時成立,則稱x=2是方程2x﹣3=1與不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,試判斷方程2x+3=1的解是否是它們中某個不等式的“理想解”,寫出過程;(2)若是方程x﹣2y=4與不等式的“理想解”,求x0+2y0的取值范圍.27.如圖,數(shù)軸上兩點A、B對應的數(shù)分別是-1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.28.對,定義一種新的運算,規(guī)定:(其中).已知,.(1)求、的值;(2)若,解不等式組.29.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.30.如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.(1)直接寫出點C的坐標.(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關系,并證明你的結(jié)論.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1),;(2)點D的坐標為或;(3)之間的數(shù)量關系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關鍵是分點D在線段OA上,和OA延長線上兩種情況.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關鍵.3.(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質(zhì).熟練運用平行線性質(zhì)和判定,添加適當輔助線是關鍵.4.(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計算和的值,再根據(jù)內(nèi)錯角相等可證;(2)先根據(jù)內(nèi)錯角相等證,再根據(jù)同旁內(nèi)角互補和等量代換得出;(3)作的平分線交的延長線于,先根據(jù)同位角相等證,得,設,,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長線于,,,,,,,,設,,則有:,可得,,.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關鍵.5.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關性質(zhì)是解題的關鍵.6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質(zhì),解決本題的關鍵是根據(jù)平行線的性質(zhì)解答.7.(1);(2).【分析】①根據(jù)發(fā)現(xiàn)的規(guī)律得出結(jié)果即可;②根據(jù)發(fā)現(xiàn)的規(guī)律將所求式子變形,約分即可得到結(jié)果.【詳解】(1)設為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;(2)設為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.【點睛】考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關鍵.8.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據(jù)前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結(jié)論,先寫出中各數(shù)的值,然后通過提取公因式、有理數(shù)加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數(shù))故應填:;;(3)由(2)的結(jié)論得:則.【點睛】本題考查了有理數(shù)運算的規(guī)律類問題,依據(jù)已知等式歸納總結(jié)出等式的一般規(guī)律是解題關鍵.9.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運算中的規(guī)律探索,根據(jù)已知運算得出數(shù)字之間的變化規(guī)律是解決問題的關鍵.10.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進行計算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點睛】本題考查了估算無理數(shù)的大?。豪猛耆椒綌?shù)和算術(shù)平方根對無理數(shù)的大小進行估算.11.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,由(2)可知:特色數(shù)有3066和2226兩個,對于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解時:n=2,p=50,q=61∴F(3066)=對于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解時:n=2,p=34,q=65∴F(2226)=∵故所有“特色數(shù)”的F(m)的最大值為:.【點睛】此題考查的是新定義類問題,理解題意,并根據(jù)新定義解決問題是解決此題的關鍵.12.(1)15;(2);(3).【分析】(1)先計算乘方,即可求出答案;(2)根據(jù)題目中的運算法則進行計算,即可求出答案;(3)根據(jù)題目中的運算法則進行計算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設①,把等式①兩邊同時乘以5,得②,由②①,得:,∴,∴;(3)設①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運算法則,熟練運用有理數(shù)乘法,以及運用消項的思想是解題的關鍵.13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據(jù)BC=AE=3,OA=1,推出OE=2,可得結(jié)論.(2)①判斷出PB=CD,即可得出結(jié)論;②根據(jù)△PEA的面積以及AE求出點P到AE的距離,結(jié)合點P的路線可得坐標.【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數(shù);∴點P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當t=4秒時,點P的橫坐標與縱坐標互為相反數(shù);②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設點P到AE的距離為h∴,∴h=,即點P到AE的距離為,∴點P的坐標為(0,)或(-3,).【點睛】本題考查坐標與圖形變化-平移,三角形的面積等知識,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當∠ACB=∠ABD時有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點睛】本題主要考查平行線的性質(zhì)和角平分線的定義,熟練掌握平行線的性質(zhì)是解題的關鍵.15.(1);(2);(3)存在點,其坐標為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設出點P的坐標,表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應點,∴設,∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點平移后的對應點;(2)∵點C在軸上,點D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設點,∴∵,∴∴,∴∴存在點,其坐標為或.【點睛】本題考查了線段平移的性質(zhì),解題的關鍵在利用平移的性質(zhì),得到點坐標的關系、圖形面積的關系,根據(jù)面積的關系,從而求出點的坐標.16.(1)A與B存在“雅含”關系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據(jù)“雅含”關系的定義即可判斷;(2)先求出解集,根據(jù)“雅含”關系的定義得出,解不等式即可;(3)首先解關于的方程組即可求得的值,然后根據(jù),,且為整數(shù)即可得到一個關于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對值的非負性求出的值,從而可得點的坐標和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關系建立等式,化簡即可得;(3)過點作軸的平行線,交直線于點,從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當時,則,,因此有,解得,此時的取值范圍為;如圖,當時,則,,因此有,解得,此時的取值范圍為,綜上,點橫坐標的取值范圍為或;②當時,則,,由(2)①可知,,則,即;如圖,當時,則,,,,,解得,綜上,;(3)過點作軸的平行線,交直線于點,由(2)②可知,,則,由題意,分以下三種情況:①如圖,當時,則,,解得,不符題設,舍去;②如圖,當時,則,,解得或(不符題設,舍去);③如圖,當時,則,,解得,符合題設,綜上,的值為或.【點睛】本題考查了偶次方和絕對值的非負性、坐標與圖形等知識點,較難的是題(3),正確分三種情況討論是解題關鍵.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關系式,可得結(jié)論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質(zhì),三角形的面積等知識,解題的關鍵是學會利用參數(shù)構(gòu)建方程解決問題.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設李思同學在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號的末兩位數(shù)為13.綜上,李思同學的編號是16080413.【點睛】本題主要考查了實數(shù)與圖形,解二元一次方程組,截圖的關鍵在于能夠準確讀懂題意.20.(1)A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【分析】(1)設A種品牌電風扇每臺進價元,B種品牌電風扇每臺進價元,根據(jù)題意即可列出關于x、y的二元一次方程組,解出x、y即可.(2)設購進A品牌電風扇臺,B品牌電風扇臺,根據(jù)題意可列等式,由a和b都為整數(shù)即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進行比較即可.【詳解】(1)設A、B兩種品牌電風扇每臺的進價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)設購進A種品牌的電風扇a臺,購進B種品牌的電風扇b臺,由題意得:100a+150b=1000,其正整數(shù)解為:或或,當a=1,b=6時,利潤=80×1+100×6=680(元),當a=4,b=4時,利潤=80×4+100×4=720(元),當a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【點睛】本題主要考查了二元一次方程組的實際應用,根據(jù)題意找出等量關系列出等式是解答本題的關鍵.21.(1)C;(2)39和29【分析】(1)首先設較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關系:①兩個兩位數(shù)的和為68,②比大990,根據(jù)等量關系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數(shù)分別是39和29.【點睛】此題主要考查了由實際問題抽象出二元一次方程組和解二元一次方程組,關鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個四位數(shù)為.22.(1),,;(2)見解析.【分析】(1)令中的,求出相應的x的值,即可得到A的坐標,將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標,進而可得到B的坐標;(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點B的縱坐標與點C的縱坐標相同,;(2),,,.∵點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,,,,.當時,即時,;當時,即時,;當時,即時,.【點睛】本題主要考查二元一次方程及方程組的應用,數(shù)形結(jié)合并分情況討論是解題的關鍵.23.(1)15;(2)①七年級(1)班有24人得滿分;②七年級(2)班的總分高.【分析】(1)分別對連正確的數(shù)量進行分析,即可得到答案;(2)①設七年(1)班滿分人數(shù)有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據(jù)題意,先求出兩個班各分數(shù)段的人數(shù),然后求出各班的總分,即可進行比較.【詳解】解:(1)根據(jù)題意,連對0個得分為0分;連對一個得分為5分;連對兩個得分為10分;連對四個得分為20分;不存在連對三個的情況,則得15分是不可能的;故答案為:15.(2)①根據(jù)題意,設七年(1)班滿分人數(shù)有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據(jù)題意,(1)班中除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,∴(1)班得5分和10分的人數(shù)相等,人數(shù)為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點睛】本題考查了二元一次方程的應用,一元一次方程的應用,解題的關鍵是熟練掌握題意,正確掌握題目的等量關系,列出方程進行解題.24.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標即可解答;(2)先求出OC的長,分點P在線段OB上和OB的延長線上兩種情況,分別利用三角形面積公式計算即可;(3)分兩種情況解答:①當點P在線段OB上時,連接PQ,過點M作PM⊥AC交AC的延長線于M,可得OP=2CQ,構(gòu)建方程解答即可;②當點P在BO的延長線上時,同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當點P在線段OB上時,BP=4t,OP=8-4t,∴②當點P在OB延長線上時,綜上所述;(3)①當點P在線段OB上時,如圖:連接PQ,過點M作PM⊥AC交AC的延長線于M,又;②當在線段延長線上時同理可得:.綜上,滿足題意t的值為或4.【點睛】本題主要考查了三角形的面積、二元一次方程組等知識點,學會用分類討論的思想思考問題以及利用面積法解決線段之間的關系成為解答本題的關鍵.25.(1)可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)最多可以制作豎式箱子50個;(3)最多可以制作豎式箱子45個【分析】(1)根據(jù)題意可以列出相應的二元一次方程組,再解方程組即可解答本題;(2)根據(jù)題意可以列出相應的不等式,從而可以求得最多可以制作豎式箱子多少個;(3)根據(jù)題意可以列出相應的二元一次方程,再根據(jù)a為整數(shù)和a≥10,即可解答本題.【詳解】解:(1)設可制作豎式無蓋箱子m個,可制作橫式無蓋箱子n個,依題意有,解得,故可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)由題意可得,1個豎式箱子需要1個A型和4個B型,1個橫式箱子需要2個A型和3個B型,設豎式箱子x個,則橫式箱子(100-x)個,(20+4×60)x+(2×20+3×60)(100-x)≤24000,解得x≤50,故x的最大值是50,答:最多可以制作豎式箱子50個;(3)C型可以看成三列,每一列可以做成3個A型或1個B型,65個C型就有65×3=195列,∵材料恰好用完,∴最后A型的數(shù)量一定是3的倍數(shù),設豎式a個,橫式b個,∵1個豎式箱子需要1個A型和4個B型,1個橫式箱子需要2個A型和3個B型,1個B型相當于3個A型,∴(1+4×3)a+(2+3×3)b=195×3,∴13a+11b=585,∵a、b均為整數(shù),a≥10,∴或或或,故最多可以制作豎式箱子45個.【點睛】本題考查一元一次不等式的應用、二元一次方程(組)的應用,解答本題的關鍵是明確題意,利用方程和不等式的性質(zhì)解答.26.(1)2x+3=1的解是不等式<3的理想解,過程見解析;(2)2<x0+2y0<8【分析】(1)解方程2x+3=1的解為x=﹣1,分別代入三個不等式檢驗即可得到答案;(2)由方程x﹣2y=4得x0=2y0+4,代入不等式解得﹣<y0<1,再結(jié)合x0=2y0+4,通過計算即可得到答案.【詳解】(1)∵2x+3=1∴x=﹣1,∵x﹣=﹣1﹣=﹣<∴方程2x+3=1的解不是不等式的理想解;∵2(x+3)=2(﹣1+3)=4,∴2x+3=1的解不是不等式2(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論