河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁
河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁
河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁
河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁
河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省登封市外國語中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的兩個焦點(diǎn)分別為,若橢圓上不存在點(diǎn),使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.2.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項(xiàng),為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是3.一條光線從點(diǎn)射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或4.如圖,在三棱錐中,是線段的中點(diǎn),則()A. B.C. D.5.在等比數(shù)列中,,是方程的兩個實(shí)根,則()A.-1 B.1C.-3 D.36.若,則的最小值為()A.1 B.2C.3 D.47.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.8.設(shè)各項(xiàng)均為正項(xiàng)的數(shù)列滿足,,若,且數(shù)列的前項(xiàng)和為,則()A. B.C.5 D.69.?dāng)?shù)列的通項(xiàng)公式是()A. B.C. D.10.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.11.已知是拋物線上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若,則()A1011 B.2020C.2021 D.202212.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將數(shù)列{n}按“第n組有n個數(shù)”的規(guī)則分組如下:(1),(2,3),(4,5,6),…,則第22組中的第一個數(shù)是_________14.某校組織了一場演講比賽,五位評委對某位參賽選手的評分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______15.設(shè)公差的等差數(shù)列的前項(xiàng)和為,已知,且,,成等比數(shù)列,則的最小值為______16.已知球面上的三點(diǎn)A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個交點(diǎn),記線段的中點(diǎn)為,若,求動點(diǎn)的軌跡方程18.(12分)已知是拋物線的焦點(diǎn),直線交拋物線于、兩點(diǎn).(1)若直線過點(diǎn)且,求;(2)若平分線段,求直線的方程.19.(12分)已知數(shù)列滿足,,設(shè).(1)證明數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)在①,②,③這三個條件中任選一個補(bǔ)充在下面問題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且______(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,令,求數(shù)列的前n項(xiàng)和21.(12分)已知等差數(shù)列的前n項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)若,求k的值22.(10分)在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】點(diǎn)P取端軸的一個端點(diǎn)時,使得∠F1PF2是最大角.已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計(jì)算公式即可得出【詳解】∵點(diǎn)P取端軸的一個端點(diǎn)時,使得∠F1PF2是最大角已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).2、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項(xiàng)為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項(xiàng),為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.3、C【解析】點(diǎn)關(guān)于軸的對稱點(diǎn)為,由反射光線的性質(zhì),可設(shè)反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結(jié)果【詳解】點(diǎn)關(guān)于軸的對稱點(diǎn)為,設(shè)反射光線所在直線的方程為:,化為因?yàn)榉瓷涔饩€與圓相切,所以圓心到直線的距離,可得,所以或故選:C4、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運(yùn)算計(jì)算作答.【詳解】在三棱錐中,是線段的中點(diǎn),所以:.故選:A5、B【解析】由韋達(dá)定理可知,結(jié)合等比中項(xiàng)的性質(zhì)可求出.【詳解】解:在等比數(shù)列中,由題意知:,,所以,,所以且,即.故選:B.6、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時,取等號.即所求最小值.故選:D7、B【解析】直接利用直線垂直公式計(jì)算得到答案.【詳解】因?yàn)閘1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點(diǎn)睛】本題考查了根據(jù)直線垂直計(jì)算參數(shù),屬于簡單題.8、D【解析】由利用因式分解可得,即可判斷出數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,從而得到數(shù)列,數(shù)列的通項(xiàng)公式,進(jìn)而求出【詳解】等價于,而,所以,即可知數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,即有,所以,故故選:D9、C【解析】根據(jù)數(shù)列前幾項(xiàng),歸納猜想出數(shù)列的通項(xiàng)公式.【詳解】依題意,數(shù)列的前幾項(xiàng)為:;;;……則其通項(xiàng)公式.故選C.【點(diǎn)睛】本小題主要考查歸納推理,考查數(shù)列通項(xiàng)公式的猜想,屬于基礎(chǔ)題.10、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點(diǎn),然后判斷選項(xiàng)即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn);所以函數(shù)的圖象只能是故選:C11、C【解析】結(jié)合向量坐標(biāo)運(yùn)算以及拋物線的定義求得正確答案.【詳解】設(shè),因?yàn)槭菕佄锞€上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C12、A【解析】分析可知直線不過原點(diǎn),可設(shè)直線的方程為,其中且,利用斜率關(guān)系可求得實(shí)數(shù)的值,化簡可得直線的方程.【詳解】若直線過原點(diǎn),則直線在兩坐標(biāo)軸上的截距相等,不合乎題意,設(shè)直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知,第組中最后一個數(shù)即為前組數(shù)的個數(shù)和,由此可求得第21組的最后一個數(shù),從而就可得第22組的第一個數(shù).【詳解】由條件可知,第21組的最后一個數(shù)為,所以第22組的第1個數(shù)為.故答案為:14、1【解析】根據(jù)平均數(shù)和方差的計(jì)算公式,求得,則問題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對應(yīng)或,故.故答案為:1.15、##0.4【解析】應(yīng)用等比中項(xiàng)的性質(zhì)及等差數(shù)列通項(xiàng)公式求公差d,進(jìn)而寫出等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,再求目標(biāo)式的最小值.【詳解】由題設(shè),,則,整理得,又,解得,故,,所以,故當(dāng)時目標(biāo)式有最小值為.故答案為:16、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因?yàn)榍蛐牡狡矫娴木嚯x為,所以球的半徑為:,所以球的表面積為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達(dá);根據(jù)條件可求出直線MN過定點(diǎn),從而可得到過定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑的圓上運(yùn)動,從而可求出動點(diǎn)的軌跡方程【小問1詳解】設(shè),則,即因?yàn)?,,所以因?yàn)?,所以,所?同理可證.因?yàn)?,,所以四邊形為平行四邊形,因?yàn)闉榈闹悬c(diǎn),所以直線必過坐標(biāo)原點(diǎn)【小問2詳解】當(dāng)直線的斜率存在時,設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因?yàn)?,所以,因?yàn)?,解得?當(dāng)時,直線的方程為過點(diǎn)A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點(diǎn).當(dāng)直線的斜率不存在時,因?yàn)?,所以直線的方程為,經(jīng)驗(yàn)證,符合題意.故直線過定點(diǎn).因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),所以過定點(diǎn).因?yàn)榇怪逼椒止蚕遥渣c(diǎn)在以為直徑的圓上運(yùn)動,該圓的半徑,圓心坐標(biāo)為,故動點(diǎn)的軌跡方程為.18、(1);(2).【解析】(1)分析可知直線的方程為,將直線的方程與拋物線方程聯(lián)立,求出點(diǎn)的坐標(biāo),利用拋物線的定義可求得;(2)利用點(diǎn)差法可求得直線的斜率,利用點(diǎn)斜式可得出直線的方程.【小問1詳解】解:設(shè)點(diǎn)、,則直線的傾斜角為,易知點(diǎn),直線的方程為,聯(lián)立,可得,由題意可知,則,,因此,.【小問2詳解】解:設(shè)、,若軸,則線段的中點(diǎn)在軸上,不合乎題意,所以直線的斜率存在,因?yàn)?、在拋物線上,則,兩式相減得,又因?yàn)闉榈闹悬c(diǎn),則,所以,直線的斜率為,此時,直線的方程為,即.19、(1)證明見解析,;(2).【解析】(1)計(jì)算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式,進(jìn)而可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯位相減法可求得.【小問1詳解】證明:對任意的,,則,則,因?yàn)?,則,,,以此類推可知,對任意的,,所以,,所以,數(shù)列是等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.20、(1);(2).【解析】(1)選擇不同的條件,再通過構(gòu)造數(shù)列以及累乘法即可求得對應(yīng)情況下的通項(xiàng)公式;(2)根據(jù)(1)中所求,求得,再利用錯位相減法求其前項(xiàng)和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時,,則,即∴,∴;當(dāng)時,也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項(xiàng)為2,公差為1則,∴.【小問2詳解】由(1)知當(dāng)時,,∴又∵時,,符合上式,∴∴∴而相減得∴.21、(1)(2)10【解析】(1)設(shè)等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項(xiàng)公式;(2)利用等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論