高中數(shù)學(xué):10-1有限樣本空間與隨機(jī)事件(學(xué)案)_第1頁
高中數(shù)學(xué):10-1有限樣本空間與隨機(jī)事件(學(xué)案)_第2頁
高中數(shù)學(xué):10-1有限樣本空間與隨機(jī)事件(學(xué)案)_第3頁
高中數(shù)學(xué):10-1有限樣本空間與隨機(jī)事件(學(xué)案)_第4頁
高中數(shù)學(xué):10-1有限樣本空間與隨機(jī)事件(學(xué)案)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第01講有限樣本空間與隨機(jī)事件

0目標(biāo)導(dǎo)航

課程標(biāo)準(zhǔn)課標(biāo)解讀

1.r解隨機(jī)現(xiàn)象與隨機(jī)試驗(yàn)的特點(diǎn);通過本節(jié)課的學(xué)習(xí),要求在理解概念的

2.理解樣本點(diǎn)、樣本空間的概念,會(huì)求所給試驗(yàn)的樣本基礎(chǔ)上,會(huì)判斷事件的性質(zhì),能準(zhǔn)確的

點(diǎn)和樣本空間:求隨機(jī)事件的樣本空間,能準(zhǔn)確選擇恰

3.理解隨機(jī)事件、必然事件、不可能事件的概念,會(huì)判當(dāng)?shù)姆椒?列舉法、樹狀圖法、列表法)

斷某一事件的性質(zhì).分析隨機(jī)實(shí)驗(yàn)的樣本空間.

趣,知識(shí)精講

知識(shí)點(diǎn)

1.隨機(jī)試驗(yàn)

(1)定義:把對隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對它的觀察稱為隨機(jī)試驗(yàn).

(2)特點(diǎn):①試驗(yàn)可以在相同條件下重復(fù)進(jìn)行:

②試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè):

③每次試臉總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不能確定出現(xiàn)哪一個(gè)結(jié)果.

2.樣本點(diǎn)和樣本空間

(1)定義:我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱為樣本點(diǎn),全體樣本點(diǎn)的集合稱為試

驗(yàn)£的樣本空間.

(2)表示:一般地,我們用。表示樣本空間,用co表示樣本點(diǎn).如果一個(gè)隨機(jī)試驗(yàn)有〃個(gè)可

能結(jié)果助,。)2,…,①”,則稱樣本空1川,3,…,①為有限樣本空間.

3.事件的分類

(I)隨機(jī)事件:①我們將樣本空間。的子集稱為隨機(jī)事件,簡稱事件,并把只包含?個(gè)樣本

點(diǎn)的事件稱為基本事件.

②隨機(jī)事件一般用大寫字母4,B,C,…表示.

③在每次試驗(yàn)中,當(dāng)且僅“1人中某個(gè)樣本點(diǎn)出現(xiàn)時(shí),稱為事件人發(fā)生.

(2)必然事件:。作為自身的子集,包含了所有的樣本點(diǎn),在每次試驗(yàn)中總有一個(gè)樣本點(diǎn)發(fā)

生,所以??倳?huì)發(fā)生,我們稱以為必然事件.

(3)不可能事件:空集。不包含任何樣本點(diǎn),在每次試驗(yàn)中都不會(huì)發(fā)生,我們稱2為不可能事

件.

【即學(xué)即練1】從6個(gè)籃球、2個(gè)排球中任選3個(gè)球,則卜列事件中,是必然事件的是.

A.3個(gè)都是籃球B.至少有1個(gè)是排球

C.3個(gè)都是排球D.至少有I個(gè)是籃球

【答案】D

【解析】

從6個(gè)籃球、2個(gè)排球中任選3個(gè)球,顯然必有一個(gè)籃球,根據(jù)這個(gè)事實(shí)對四個(gè)選項(xiàng)逐一判

斷.

【詳解】

解析:從6個(gè)籃球、2個(gè)排球中任選3個(gè)球,A,B是隨機(jī)事件,C是不可能事件,D是必

然事件,故選D.

【點(diǎn)睛】

本題考查了對必然事件的理解.解題的關(guān)健是對問題的隱含事實(shí)的認(rèn)識(shí).

【即學(xué)即練2】在25件同類產(chǎn)品中,有2件次品,從中任取3件產(chǎn)品,其中不可能事件為

()

A.3件都是正品B.至少有1件次品

C.3件都是次品D.至少有1件正品

【答案】C

【解析】

【分析】

根據(jù)隨機(jī)事件、不可能事件、必然事件即可得出結(jié)果.

【詳解】

25件產(chǎn)品中只有2件次品,所以不可能取出3件都是次品.

故選:C

【即學(xué)即練3】同時(shí)擲兩枚大小相同的骰子,用(x,y)表示結(jié)果,記事件A為“所得點(diǎn)數(shù)

之和小于5”,則事件A包含的樣本點(diǎn)數(shù)是()

A.3B.4C.5D.6

【答案】D

【解析】

【分析】

根據(jù)基本事件概念即可求解.

【詳解】

因?yàn)槭录嗀={(1,1),(],2),(1,3),(2,I),(2,2),(3,1)),

共包含6個(gè)樣本點(diǎn).

故選:D.

【即學(xué)即練4】卜列事件中,隨機(jī)事件的個(gè)數(shù)是()

①2022年8月18日,北京市不下雨:②在標(biāo)準(zhǔn)大氣壓下,水在4c時(shí)結(jié)冰:③從標(biāo)有1,2,

3,4的4張?zhí)柡炛腥稳∫粡垼?號(hào)簽:④xeR,則k|的道不小于0.

A.1B.2C.3D.4

【答案】B

【解析】

【分析】

根據(jù)各項(xiàng)的描述,判斷隨機(jī)事件、必然事件、不可能事件,進(jìn)而確定隨機(jī)事件的個(gè)數(shù).

【詳解】

①2022年8月Q日,北京市不下雨,隨機(jī)事件;

②在標(biāo)準(zhǔn)大氣壓下,水在4c時(shí)結(jié)冰,不可能事件;

③從標(biāo)有1,2,3,4的4張?zhí)柡炛腥稳∫粡?,恰?號(hào)簽,是隨機(jī)事件;

④xwR,則W的值不小于0,必然事件:

??.隨機(jī)事件有①、③.

故選:B

【即學(xué)即練5】下列事件:①當(dāng)x是實(shí)數(shù)時(shí),1-1止2;②某班一次數(shù)學(xué)測試,及格率低于75%;

③從分別標(biāo)有QI23….,9這十個(gè)數(shù)字的紙團(tuán)中任取一個(gè),取出的紙團(tuán)中標(biāo)的數(shù)字是偶數(shù);④

體育彩票某期的特等獎(jiǎng)號(hào)碼.其中是隨機(jī)事件的是()

A.①②@B.①③④C.②?④D.①@④

【答案】C

【解析】

根據(jù)隨機(jī)事件的定義,逐項(xiàng)檢驗(yàn),即可求得答案.

【詳解】

對于①,當(dāng)X是實(shí)數(shù)忖,AIX|=2,方程:無解.故①不可能事件.

對于②,某班一次數(shù)學(xué)測試,及格率低于75%是隨機(jī)事件.

對于③,從分別標(biāo)有0,123,…,9這十個(gè)數(shù)字的紙團(tuán)中任取一個(gè),取出的紙團(tuán)中標(biāo)的數(shù)字是偶

數(shù)是隨機(jī)事件.

對于④,體育彩票某期的特等獎(jiǎng)號(hào)碼是隨機(jī)事件.

故隨機(jī)事件為:②③④

故選:C.

【點(diǎn)睛】

本題考查了判斷事件是否為隨機(jī)事件,解題的關(guān)跳是掌握隨機(jī)事件的定義,考查了分析能力,

屬于基礎(chǔ)題.

【即學(xué)即練6】給出下列四個(gè)命題:

【分析】

根據(jù)隨機(jī)事件和不可能事件的概念求解即可.

【詳解】

種子發(fā)芽是隨機(jī)的,故是隨機(jī)事件;

投籃3次,不可能中4次,是不可能事件:

故答案為:隨機(jī);不可能.

【即學(xué)即練9】在200件產(chǎn)品札有192件一級(jí)品,8件二級(jí)品,則下列事件:

①”在這200件產(chǎn)品中仟意選9件,全部是一級(jí)品”:

②“在這200件產(chǎn)品中任意選9件,全部都是二級(jí)品”:

③“在這200件產(chǎn)品中任意選9件,不全是一級(jí)品”.

其中是隨機(jī)事件;是不可能事件.(填上事件的編號(hào))

【答案】:①③:②

【解析】

【分析】

根據(jù)陵機(jī)事件、不可能事件的定義即可得出結(jié)果.

【詳解】

解析:因?yàn)槎?jí)品只有8件,故9件產(chǎn)品不可能全是二級(jí)品,

所以②是不可能事件.

故答案為:①③;②

【即學(xué)即練10】從含有6件次品的50件產(chǎn)品中任取4件,觀察其中次品數(shù),其樣本空間為

【答案】{0.123,4}

【解析】

【分析】分析取出的4件產(chǎn)品的次品個(gè)數(shù)即可求解.

【詳解】由分析可知取出的4件產(chǎn)品的次品個(gè)數(shù)為0.1,2,3,4,

所以樣本空間為{0,123,4},故答案為:{0,123,4}.

【即學(xué)即練11】現(xiàn)有10個(gè)同類產(chǎn)品,其中7個(gè)是正品,3個(gè)是次品.有以下事件:從這10

個(gè)產(chǎn)品中任意抽取4個(gè)產(chǎn)品,①4個(gè)產(chǎn)品都是正品:②至少有1個(gè)次品:③4個(gè)產(chǎn)品都是次

品;④至少有1個(gè)正品.其中隨機(jī)事件為,不可能事件為,必然事件為

.(填序號(hào))

【答案】①②③④

【解析】

【分析】事件不可能發(fā)生為不可能事件,事件必然發(fā)生為必然事件,有可能發(fā)生,也有可能

不發(fā)生,為隨機(jī)事件.

【詳解】10個(gè)同類產(chǎn)品,其中7個(gè)是止品,3個(gè)是次品.,從中任意抽取4個(gè)產(chǎn)品,則至少

有一個(gè)是正品,故④為必然事件,而不可能4個(gè)產(chǎn)品都是次品,故③為不可能事件,可能會(huì)

4個(gè)產(chǎn)品都是正品,可能會(huì)至少有1個(gè)次品,所以①②是隨機(jī)尋件

故答案為:①②;③:④

【即學(xué)即練12】一只口袋內(nèi)裝有5個(gè)大小相同的球,白球3個(gè)?黑球2個(gè),從中一次摸出2

個(gè)球.

(I)共有多少個(gè)樣本點(diǎn)?

(2)-2個(gè)都是白球''包含幾個(gè)樣本點(diǎn)?

【答案】(1)10個(gè):(2)3個(gè).

【分析】(I)將袋中的5個(gè)求分白球、黑球編號(hào),用列舉法寫出所有可能結(jié)果即可得解.

(2)利用(1)寫出摸出的2個(gè)球都是白球結(jié)果即可得解.

【解析】(1)用1,2,3表示3個(gè)白球,用小〃表示2個(gè)黑球,則從袋中一次摸出2個(gè)球的

不同結(jié)果:

(I,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),

所以共10個(gè)樣本點(diǎn).

(2)由(l)知,“2個(gè)都是白球”含有的結(jié)果是:(I,2),(1,3),(2,3),共3個(gè)樣本點(diǎn).

Q能力拓展

考法01

隨機(jī)現(xiàn)象的判定

【典例1】以下現(xiàn)象是隨機(jī)現(xiàn)象的是()

A.標(biāo)準(zhǔn)大?壓下,水加熱到I00C,必會(huì)沸騰

B.長和寬分別為。,〃的矩形,其面枳為。

C.走到十字路口,遇到紅燈

D.三角形內(nèi)角和為180。

【答案】C

【解析】

【分析】

對每一個(gè)選項(xiàng)逐一分析判斷得解.

【詳解】

A.標(biāo)準(zhǔn)大氣壓下,水加熱到I00C,必會(huì)沸騰,是必然事件;

B.長和寬分別為小〃的矩形,其面積為ax〃,是必然事件:

C.走到十字路口,遇到紅燈,是隨機(jī)事件;

D.三角形內(nèi)角和為18()。,是必然事件.

故選C

【點(diǎn)睛】

本題主要考查必然事件、隨機(jī)事件的定義與判斷,意在考查學(xué)生對該知識(shí)的理解掌握水平,

屬于基礎(chǔ)題.

【典例2】以下現(xiàn)象不是隨機(jī)現(xiàn)象的是()

A.拋擲一枚硬幣,出現(xiàn)反面B.某人買彩票中獎(jiǎng)

C.標(biāo)準(zhǔn)大氣壓下,水加熱到100'CD.明天下雨

【答案】C

【解析】

根據(jù)隨機(jī)現(xiàn)象的概念逐一判斷即可得解.

【詳解】由隨機(jī)現(xiàn)象的概念可知A、B、D都是隨機(jī)現(xiàn)象,C為確定性現(xiàn)象.故選:C.

【點(diǎn)睛】本題考查了隨機(jī)現(xiàn)象的概念,屬于基礎(chǔ)題.

【典例3】有下面的試驗(yàn):

①如果a,Z?GR,那么

②某人買彩票中獎(jiǎng);

③實(shí)系數(shù)一次方程必有?個(gè)實(shí)根;

④在地球上,蘋果抓不住必然往下掉:

其中必然現(xiàn)象有()

A.①B.@C.??D.①④

【答案】D

【解析】

【詳解】

如果a,b£R,那么一定有外b=A?a,故①是必然現(xiàn)象.某人買彩票中獎(jiǎng),可能發(fā)生,也可

能不發(fā)生,故②是隨機(jī)現(xiàn)象.③實(shí)系數(shù)一次方程必有一個(gè)實(shí)根,這有可能發(fā)生,也可能不發(fā)

生(如實(shí)系數(shù)方程0戶5沒有實(shí)數(shù)根),故③是隨機(jī)現(xiàn)象.在地球上,蘋果抓不住必然往下掉,

這必然發(fā)生,故④是必然現(xiàn)象,故選D.

【典例4】判斷下列現(xiàn)象是必然現(xiàn)象還是隨機(jī)現(xiàn)象.

(1)擲一個(gè)質(zhì)地均勻的骰子出現(xiàn)的點(diǎn)數(shù);.

(2)行人在十字路口看到的交通信號(hào)燈的顏色;.

(3)在10個(gè)同類產(chǎn)品中,有K個(gè)正品、2個(gè)次品,從中任意抽出2個(gè)檢驗(yàn)的結(jié)果..

【答案】隨機(jī)現(xiàn)象隨機(jī)現(xiàn)象隨機(jī)現(xiàn)象

【解析】

【分析】由隨機(jī)現(xiàn)象和必然現(xiàn)象的定義判斷.

【詳解】

(1)擲一個(gè)質(zhì)地均勻的骰子其點(diǎn)數(shù)有可能出現(xiàn)1~6,點(diǎn)數(shù)是不能確定的;因此是隨機(jī)現(xiàn)象.

(2)行人在十字路口看到交通信號(hào)燈的顏色有可能是紅色,有可能是黃色,也有可能是綠

色,故是隨機(jī)現(xiàn)象.

(3)抽出的2個(gè)產(chǎn)品中有可能全部是正品,也有可能是一個(gè)正品一個(gè)次品,還有可能是兩

個(gè)次品,故是隨機(jī)現(xiàn)象.

故答案為(1)隨機(jī)現(xiàn)象:(2)隨機(jī)現(xiàn)象:(3)隨機(jī)現(xiàn)象.

【點(diǎn)睛】本題考杳必然現(xiàn)象和隨機(jī)現(xiàn)象的概念.事件出現(xiàn)的結(jié)果是不確定的,則為隨機(jī)現(xiàn)象.

必定發(fā)生的則為必然現(xiàn)象.

考法02

隨機(jī)事件的判定:

【典例5】給出下列四個(gè)命題:

①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件:②“當(dāng)x為

某一實(shí)數(shù)時(shí),可使丁<0”是不可能事件:③“明天蘭州要下雨”是必然事件:④“從100個(gè)燈

泡中取出5個(gè),5個(gè)都是次品”是隨機(jī)事件.

其中正確命題的序號(hào)是()

A.①②③@B.①②③C.?@@D.①②

【答案】C

【解析】

根據(jù)必然事件、不可能事件和隨機(jī)事件的概念,結(jié)合題意逐一判斷即可.

【詳解】

①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”一定發(fā)生,是必然事件,

①正確:

②”當(dāng)x為某一實(shí)數(shù)時(shí),可使f<0”不可能發(fā)生,沒有哪個(gè)實(shí)數(shù)的平方小于0,是不可能事

件,②正確:

③“明天蘭州要下雨''是隨機(jī)事件,故③錯(cuò);

④“從1。0個(gè)燈泡中取出5個(gè),5個(gè)都是次品”有可能發(fā)生,有可能不發(fā)生,是隨機(jī)事件,故

④正確.

故選:C.

【點(diǎn)睛】

本題考查了必然事件、不可能事件和隨機(jī)事件的概念,屬于基礎(chǔ)題.

【典例6】在200件產(chǎn)品中,192有件一級(jí)品,8件二級(jí)品,則下列事件:

①在這200件產(chǎn)品中任意選出9件,全部是一級(jí)品:

②在這200件產(chǎn)品中任意選出9件,全部是二級(jí)品:

③在這20()件產(chǎn)品中任苞選出9件,不全是一級(jí)品;

④在這200件產(chǎn)品中任意選出9件,至少一件是一級(jí)品.

其中的隨機(jī)事件有()

A.①③B.③④C.②@D.①②

【答案】A

【解析】

【分析】

按照隨機(jī)事件、必然事件、不可能事件的定義一一判斷.

【詳解】

由于在200件產(chǎn)品中,192有件一級(jí)品,8件二級(jí)品,

則①“在這200件產(chǎn)品中任意選出9件,全部是一級(jí)品”,這件事可能發(fā)生,也可能不發(fā)生,

故是隨機(jī)事件.

②“在這200件產(chǎn)品中任意選出9件,全部是二級(jí)品”,這件事根本不可能發(fā)生,故是不可能

事件.

③“在這200件產(chǎn)品中任意選出9件,不全是一級(jí)品”,這件事可能發(fā)生,也可能不發(fā)生,故

是隨機(jī)事件.

④“在這200件產(chǎn)品中任意選出9件,其中不是一級(jí)品的件數(shù)小于100”,是一定要發(fā)生的事

件,故是必然事件

故選:A.

【典例7】在10件同類商品中,有8件紅色的,2件白色的,從中任意抽取3件,下列事件

是隨機(jī)事件的是()

A.3件都是紅色B.3件都是白色

C.至少有I件紅色D.有I件白色

【答案】AD

【解析】

根據(jù)隨機(jī)事件定義,結(jié)合題意即可判斷.

【詳解】

在10件同類商品中,有8件紅色的,2件白色的,從中任意抽取3件,

對于A,抽取3件有可能都是紅色,也有可能出現(xiàn)白色,所以A是隨機(jī)事件:

對于B,因?yàn)橹挥?件是白色,所以不可能出現(xiàn)3件是白色,即B為不可能事件,所以B

不是隨機(jī)事件,

對于C,因?yàn)橹挥?件是白色,所以取出的3件中至少有I件是紅色,所以C為必然事件,

所以C不是隨機(jī)事件,

對于D,抽出3件中白色可能有0,I,2三種可能,所以有1件白色是隨機(jī)事件,即D為

隨機(jī)事件,

綜上可知,隨機(jī)事件為AD,

故選:AD.

【點(diǎn)睛】本題考查了隨機(jī)事件的判斷,屬于基礎(chǔ)題.

考法03

事件的性質(zhì)判定

【典例8】從含杓10件正品、2件次品的12件產(chǎn)品中,任怠抽取3件,則必然事件是()

A.3件都是正品B.3件都是次品

C.至少有1件次品D,至少有1件正品

【答案】D

【解析】

【分析】

根據(jù)隨機(jī)事件、不可能事件以及必然事件的定義對選項(xiàng)中的事件逐?判斷即可.

【詳解】

從10件正品,2件次品,從中任意抽取3件

A:3件都是正品是隨機(jī)事件,

B:3件都是次品不可能事件,

C:至少有1件次品是隨機(jī)事件,

D:因?yàn)橹挥袃杉纹?,所以從中任意抽?件必然會(huì)抽到正品,即至少有一件是正品是必

然事件,故選D.

【點(diǎn)睛】本題主要考查了隨機(jī)事件、不可能事件、必然事件的定義與應(yīng)用,意在考查對基本

概念掌握的熟練程度,屬于基礎(chǔ)題.

【典例9】下列事件:①一個(gè)口袋內(nèi)裝有5個(gè)紅球,從中任取一球是紅球;②拋擲兩個(gè)骰子,

所得點(diǎn)數(shù)之和為9:③/之0(xeR);④方程丁-3尤+5=0有兩個(gè)不相等的實(shí)數(shù)根:⑤巴

西足球隊(duì)在下屆世界杯足球賽中奪得冠軍.其中隨機(jī)事件的個(gè)數(shù)為().

A.1B.2C.3D.4

【答案】B

【解析】

【分析】根據(jù)事件的定義判定.

【詳解】

①③是必然事件;②⑤是隨機(jī)事件;④是不可能事件.

故選B.

【點(diǎn)睛】本題考查事件的定義,考查必然事件、隨機(jī)事件、不可能事件的概念,屬于基礎(chǔ)題.

【典例10】卜列事件中不可能事件的個(gè)數(shù)為()

①拋一塊石塊下落:

②如果。>〃,那么〃-力>0;

③沒有水分,種子能發(fā)芽:

④某電話機(jī)在I分鐘內(nèi)收到2次呼叫:

⑤在標(biāo)準(zhǔn)大氣壓下且溫度低于(TC時(shí),冰融化.

A.1B.2C.3D.4

【答案】B

【解析】

【分析】

根據(jù)必然事件、隨機(jī)事件、不可能事件的定義判斷即可.

【詳解】

①②是必然事件,④是隨機(jī)事件,③⑤是不可能事件.

所以不可能事件的個(gè)數(shù)為2.

故選:B.

【典例II】下列事件是隨機(jī)事件的是()

①當(dāng)X210時(shí),IgxNl;

②當(dāng)xwR,丁+]=。有解;

③當(dāng)“cR,關(guān)于x的方程丁-4=0在實(shí)數(shù)集內(nèi)有解;

④當(dāng)sina>sin〃時(shí),a>ft,

A.①②B.②③C.③?D.①@

【答案】C

【解析】

根據(jù)隨機(jī)事件的概念對四個(gè)事件分別進(jìn)行分析即可得到結(jié)論。

【詳解】

對丁?①,由于工210時(shí),他心1恒成立,故事件①為必然事件;

對?、?,由于/+|=o無實(shí)數(shù)根,故事件②為不可能事件;

對于③,當(dāng)aeR,關(guān)于x的方程寸+〃=0在實(shí)數(shù)集內(nèi)可能有解,也可能無解,故事件③為

隨機(jī)事件;

對于④,當(dāng)sina>sin。時(shí),a>/T可能成立,也可能不成立,故事件④為隨機(jī)事件,

綜上,事件③④為隨機(jī)事件.

故選:C.

【點(diǎn)睛】本題考查對隨機(jī)事件概念的理解,是基礎(chǔ)題。

[典例12]已知非空集合A8,且集合A是集合B的真子集,則二列命題為真命題的是(

A.“若xeA,則xe/T是必然事件B.“若x史A,貝be8”是不可能事件

C.“若xwB,則是隨機(jī)事件D.“若x史8,則x任A”是必然事件

【答案】ACD

【解析】

利用集合間的基本關(guān)系,將問題轉(zhuǎn)化為元素與集合的關(guān)系,即可得答案.

【詳解】

對A,符合真子集的定義,故A正確:

對B,“若則xwB”也可能成立.故B錯(cuò)誤:

對C,“若則3wA成立,也可能工紀(jì)A,故C正確;

對D,“若x史8,則XEA”,由文氏圖可以理解,故D正確;

故選:ACD.

【點(diǎn)睛】本題考查利用集合間的關(guān)系,判斷事件的類型,考杳對概念的理解.

考法04

求樣本點(diǎn)與樣本空間:寫樣本空間的關(guān)鍵是找樣本點(diǎn),具體有三種方法:

(1)列舉法:適用樣本點(diǎn)個(gè)數(shù)不是很多,可以把樣本點(diǎn)一一列舉出來的情況,但列舉時(shí)必

須按一定的順

序,要做到不重不漏.

(2)列表法:適用于試驗(yàn)中包含兩個(gè)或兩個(gè)以上的元素,且試驗(yàn)結(jié)果相對較多的樣本點(diǎn)個(gè)

數(shù)的求解問題,通常把樣本歸納為“有序?qū)崝?shù)對“,也可用坐標(biāo)法,列表法的優(yōu)點(diǎn)是準(zhǔn)確、全

面、不易遺漏.

(3)樹狀圖法:適用較更雜問題中的樣本點(diǎn)的探求,一般需要分步(兩步及兩步以上)完成

的結(jié)果可以用樹狀圖進(jìn)行列舉.

【典例13】有4張卡片,上面分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機(jī)抽取2張,

則取出的2張卡片上的數(shù)字之和為奇數(shù)的所有基本事件數(shù)為()

A.2B.3

C.4D.6

【答案】C

【解析】

【分析】從從這4張卡片中隨機(jī)抽取2張卡片,取出的2張卡片上的數(shù)字之和為奇數(shù)包括的

結(jié)果,可以通過列舉得到.

【詳解】由題意知,從從這4張卡片中隨機(jī)抽取2張卡片,取出的2張卡片上的數(shù)字之和為

奇數(shù)包括(L2),(1,4),(2,3),⑶4)共有四種結(jié)果,故選C.

【點(diǎn)睛】

本題考查:排列組合的實(shí)際問題,這是一個(gè)最簡單的組合數(shù)問題,在解題時(shí),注苞這里是一次

抽取兩張,不用考慮順序.

【典例14】一個(gè)家庭有兩個(gè)小孩兒,則可能的結(jié)果為()

A.{(男,女),(男,男),(女,女)}

B.{(男,女),(女,男)}

C.{(男,男),(男,女),(女,男),(女,女)}

D.{(男,男),(女,女)}

【答案】C

【解析】

【詳解】

隨機(jī)試驗(yàn)的所有結(jié)果要保證等可能性.兩小孩兒有大小之分,所以(男,女)與(如男)是不同的結(jié)

果,故選C.

【典例15]袋中有5只球,其中有3只紅球,編號(hào)為1,2,3,有2只黃球,編號(hào)為4,5.

現(xiàn)從中任意取一只球,試驗(yàn)4觀察顏色;試驗(yàn)B:觀察號(hào)碼.

試驗(yàn)人的樣本空間為.

試驗(yàn)B的樣本空間為.

【答案】(紅,黃}優(yōu)2,3,4,5}

【解析】

【分析】

由樣本空間的定義即可求解.

【詳解】

解:由題意,試驗(yàn)A的樣本空間為{紅,黃};試驗(yàn)8的樣本空間為優(yōu)2,3,4,5}.

故答案為:{紅,黃];{123,4,5}.

【典例16】拋擲兩枚硬幣,觀察它們落地時(shí)朝上的面的情況,寫出試驗(yàn)的樣本空間

【解析】擲兩枚硬幣,第一枚硬幣可能的基本結(jié)果用X表示,第二枚硬幣可能的基本結(jié)果用

y表示,那么試驗(yàn)的樣本點(diǎn)可用(x,y)表示,于是,試驗(yàn)的樣本空間。={(正面,正面),(正

面,反面),(反面,正面),(反面,反面)}

如果我們用1表示硬幣“正面朝上”,用0表示硬幣“反面朝上”,那么樣本空間還可以簡單表

示為。={(1,1),(1,0),(0,1),(0,0)}

如圖所示,畫樹狀圖可以幫助我們理解例3的解答過程

第一枚第二^

-1

【典例17】在0,1,2,…,9這1()個(gè)數(shù)字中任意選取一個(gè),寫出試驗(yàn)的樣本點(diǎn)和樣本空

間.

【答案】見解析

【解析】

【分析】

利用樣本點(diǎn)和樣本空間的定義進(jìn)行求解即可.

【詳解】

在0,1,2,…,9這10個(gè)數(shù)字中任意選取一個(gè),

試驗(yàn)的樣本點(diǎn)為:0,1,2,3,4,5,6,7,8,9:

樣本空間C={0,1,2,34,5,6,7,8,9}.

【典例18】已知集合加={-2,3},N={-4.5,6),從兩個(gè)集合中各取一個(gè)元素構(gòu)成點(diǎn)的坐標(biāo).

(1)寫出這個(gè)試驗(yàn)的樣本空間:(2)求這個(gè)試驗(yàn)樣本點(diǎn)的總數(shù):

(3)寫出“得到的點(diǎn)是第一象限內(nèi)的點(diǎn)”這一事件所包含的樣本點(diǎn);

(4)說出事件A={(-2,-4),(-4-2)}所表示的實(shí)際意義.

【答案】⑴答案見解析:(2)12;(3)(3,5),(3,6),(5,3卜(6,3):(4)得到的點(diǎn)是第三象限內(nèi)的點(diǎn).

【分析】

(I)將樣本點(diǎn)一一列出在花括號(hào)內(nèi)可得樣本空間;

(2)由樣本空間可得樣本點(diǎn)的個(gè)數(shù);

(3)找出橫縱坐標(biāo)都大于。的樣本點(diǎn)即可;

(4)根據(jù)事件A中樣本點(diǎn)的坐標(biāo)可得實(shí)際意義.

【解析】(1)樣本空間為

{(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6),(-4,-2),(5,-2),(6,-2),(-4,3),(5,3),(6,3)}

(2)由知這個(gè)試驗(yàn)樣本點(diǎn)的總數(shù)為12.

⑶得到的點(diǎn)是第一象限內(nèi)的點(diǎn)”這一事件所包含的樣本點(diǎn)為(3,5),(3,6),(5,3),(6,3).

(4)事件A={(-2,-4),(-4,-2》表示得到的點(diǎn)是第三象限內(nèi)的點(diǎn).

【典例19]樹形圖(TreeDiag「a,n)是一種有層次地枚舉各種可能情況的可視化方法.樹形圖

有助于我們直觀地探求某些樣本空間.例如,考察有兩個(gè)孩子的家庭,記“從中任意抽取一個(gè)

家庭,兩個(gè)孩子是一男一女'為事件4.我們畫出如圖所不的樹形圖,可知樣本空間。=((男,

男),(男,女),(女,男),(女,女)},事件4={(男,女),(女,男)}.

第I個(gè)男女

AA

第2個(gè)男女男女

試用樹形圖的方法分析下列習(xí)題

一只不透明的口袋內(nèi)裝有大小相同的3個(gè)球,且分別標(biāo)有1,2,3三個(gè)號(hào)碼.記“從袋中不放

I可地抽取2個(gè)球,第一個(gè)球的號(hào)碼是1”為事件八,“從袋中不放【可地抽取2個(gè)球,第二個(gè)球

的號(hào)碼是2”為事件及試分別寫出Q,A,B及A8所包含的樣本點(diǎn).

【答案】C={(1,2),(1,3),⑵瑞(Z3),(3,1),(3,2)},4={(1,2),(1,3)},8={(1,2),(3,2)},

加02)}

【解析】

【分析】利用樹狀圖把情況列出來,再根據(jù)樹狀圖寫出Q,A,4及所包含的樣本點(diǎn).

【詳解】

樣本空間。={(1,2),(1,3),(2J),(23),(3,1),(3,2)},事件4={(1,2),(1,3)},事件

8={(1.2),(3,2)},事件AB=[(1,2)}

第一次123

AAA

第二次23?312

4分層提分

題組A基礎(chǔ)過關(guān)練

1.下列現(xiàn)象中,是隨機(jī)現(xiàn)象的有()

①在一條公路上,交警記錄某一小時(shí)通過汽車超過300輛.

②若。為實(shí)數(shù),則|。+1兇.

③發(fā)射一顆炮彈,命中目標(biāo).

④檢查流水線上一件產(chǎn)品,這件產(chǎn)品是次品.

A.1個(gè)B.2個(gè)

C.3個(gè)D.4個(gè)

【答案】C

【解析】

【分析】

根據(jù)隨機(jī)現(xiàn)象和必然現(xiàn)象的定義判斷得解.

【詳解】

當(dāng)。為實(shí)數(shù)時(shí),la+lRO恒成立,是必然現(xiàn)象,其余3個(gè)均為隨機(jī)現(xiàn)象.

所以是隨機(jī)現(xiàn)象的有3個(gè).

故選:C

2.“連續(xù)拋擲兩個(gè)質(zhì)地均勻的骰子,記錄朝上的面的點(diǎn)數(shù)”,該試驗(yàn)的結(jié)果共有().

A.6種B.12種C.24種D.36種

【答案】D

【解析】

【分析】

由第一次的點(diǎn)數(shù)和第二次的點(diǎn)數(shù),組成一個(gè)事件,寫出所有可能即得.

【詳解】試驗(yàn)的全部結(jié)果為(LI),(L2),(1,3),(1,4),(1.5),(1,6),(2,1),(2,2),

(2,3),(2,4),(2.5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),

(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),

(6,5),(6,6),共36種.

故選D.

【點(diǎn)睛】本題考查樣本空間,解題時(shí)書寫樣本點(diǎn)時(shí)要注意有先后順序.

3.下列事件中,是必然事件的是()

A.對任意實(shí)數(shù)必有/沙

B.某人練習(xí)射擊,擊中10環(huán)

C.從裝有1號(hào),2號(hào),3號(hào)球的不透明的袋子中取一球是I號(hào)球

D.某人購買彩票中獎(jiǎng)

【答案】A

【解析】

【分析】

根據(jù)必然事件的概念.考察必然發(fā)生的事件,即為所選項(xiàng).

【詳解】

選項(xiàng)B,C,D中的事件都不確定發(fā)生,因此都不是必然事件:

A選項(xiàng),當(dāng)xeR時(shí),總有-2。發(fā)生,是必然事件.

故選:A.

【點(diǎn)睛】

本題考查必然事件的概念與判定,屬基礎(chǔ)題.

4.下列事件:

①任取三條線段,這三條線段恰好組成直角三角形:

②從一個(gè)三角形的三個(gè)頂點(diǎn)各任畫一條射線,這三條射線交于一點(diǎn);

③實(shí)數(shù)小8都不為0,但。2+"=0;

④明年12月28日的最高氣溫高于今年12月28日的最高氣溫.

其中為隨機(jī)事件的是()

A.①②?B.④C.①?④D.②?④

【答案】C

【解析】

【分析】

根據(jù)隨機(jī)事件概念逐一判斷,即可選擇.

【詳解】

任取三條線段,這三條線段不一定能組成直角三角形,所以①為隨機(jī)事件;

從一個(gè)三角形的三個(gè)頂點(diǎn)各任畫一條射線,這三條射線不一定交于一點(diǎn),所以②為隨機(jī)事件;

因?yàn)楫?dāng)實(shí)數(shù)m〃都不為0時(shí)/+〃=(),所以③為不可能事件;

明年12月28日的最高氣溫可能高于今年12月28日的最高氣溫,所以④為隨機(jī)事件:

故選C.

【點(diǎn)睛】

本題考查隨機(jī)事件概念,考查基本分析判斷能力,屬基礎(chǔ)題.

5.袋中有大小、形狀相同的紅球、黑球各?個(gè),現(xiàn)在有放回地隨機(jī)摸3次,每次摸取?個(gè),

觀察摸出球的顏色,則此隨機(jī)試驗(yàn)的樣本點(diǎn)個(gè)數(shù)為()

A.5B.6C.7D.8

【答案】D

【解析】

【分析】

由題意一一列舉出基本事件即可得出選項(xiàng).

【詳解】

因?yàn)槭怯蟹呕氐仉S機(jī)摸3次,

所以隨機(jī)試驗(yàn)的樣本空間為(紅,紅,紅),(紅,紅,黑),(紅,黑,紅),(紅,黑,黑),

(黑,紅,紅),(黑,紅,黑),(黑,黑,紅),(黑,黑,黑)}.共8個(gè).

故選:D

6,下列試驗(yàn)?zāi)軜?gòu)成事件的是(:)

A.擲一次硬巾B.標(biāo)準(zhǔn)大氣壓卜,水燒至1(X)(

C.從100件產(chǎn)品中任取3件D.某人投籃5次,恰有3次投中

【答案】D

【解析】

【分析】

根據(jù)事件可以分為必然事件、隨機(jī)事件和不可能事件即可判斷.

【詳解】

解:所謂事件,實(shí)際卜就是在一定條件下所出現(xiàn)的某種結(jié)果.在一定條件下必然發(fā)生的事件.

叫做必然事件.在一定條件下不可能發(fā)生的事件,叫做不可能事件.隨機(jī)事件在一定的條件

下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件.

A,B,C三個(gè)選項(xiàng)不能劃分為三種事件的其中?個(gè),故選:D.

7.下列事件為確定事件的有()

(1)在一標(biāo)準(zhǔn)大氣壓下,20P的水結(jié)冰

(2)邊長為。,〃的長方形面積為必

(3)拋一個(gè)硬幣,落地后正面朝上

(4)平時(shí)的百分制考試中,小白的考試成績?yōu)?05分.

A.I個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】A

【解析】

【分析】

根據(jù)不可能事件、必然事件、隨機(jī)事件的概念進(jìn)行逐一判斷即可得到答案.

【詳解】

(1)在一標(biāo)準(zhǔn)人氣床下,20P的水結(jié)冰,這是不可能發(fā)生的事件,故是不可能事件.

(2)邊長為。,〃的長方形面積為面,這是必然發(fā)生的事件,故是必然事件

(3)拋一個(gè)硬幣,落地后正面朝上,這件事可能發(fā)生,也可能不發(fā)生,屬于隨機(jī)事件.

(4)平時(shí)的百分制考試中,小白的考試成績?yōu)?05分,這是不可能發(fā)生的事件,故是不可

能事件.

故選:A.

8.下列事件中是隨機(jī)事件的個(gè)數(shù)有()

①連續(xù)兩次拋擲兩個(gè)骰子,兩次都出現(xiàn)2點(diǎn):

②在地球上,樹上掉下的雪梨不抓住就往下掉;

③某人買彩票中獎(jiǎng);

④已經(jīng)有一個(gè)女兒,那么第二次生男孩;

⑤在標(biāo)準(zhǔn)大氣壓下,水加熱到90C是會(huì)沸騰.

A.IB.2C.3D.4

【答案】C

【解析】

【分析】

根據(jù)隨機(jī)事件就是在指定條件下,可能發(fā)生也可能不發(fā)生的事件,依據(jù)定義即可判斷,得到

答案.

【詳解】

由題意,隨機(jī)事件就是在指定條件下.可能發(fā)牛.也可能不發(fā)4:的事件.

①連續(xù)兩次拋擲兩個(gè)骰子,兩次都出現(xiàn)2點(diǎn)可能發(fā)生,也可能不發(fā)生,所以是隨機(jī)事件,

②在地球上,樹上掉下的雪梨不抓住就往下掉,這是一定發(fā)生的事件,不是隨機(jī)事件;

③某人買彩票中獎(jiǎng),此事可能發(fā)生,也可能不發(fā)生,所以是隨機(jī)事件:

④己經(jīng)有一個(gè)女兒,那么第二次生男孩,此事可能發(fā)生,也可能不發(fā)生,所以是隨機(jī)事件;

⑤在標(biāo)準(zhǔn)大氣壓下,水加熱到90c是會(huì)沸騰,此事一定不發(fā)生,不是隨機(jī)事件.

故選C.

【點(diǎn)睛】

本題主要考查了隨機(jī)事件,必然事件、不可能事件的概念及判斷,其中熟記隨機(jī)事件的基本

概念是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.

9.在10名學(xué)生中,男生有x名,現(xiàn)從10名學(xué)生中任選6人去參加某項(xiàng)活動(dòng):①至少有1

名女生:②5名男生,1名女生;③3名男生:,3名女生.若要便①為必然事件,②為不可能

事件,③為隨機(jī)事件,則》=()

A.5B.6C.3或4D.5或6

【答案】C

【解析】

利用必然事件、不可能事件、隨機(jī)事件的性質(zhì)求解.

【詳解】

依題意知,10名同學(xué)中,男生人數(shù)少于5人,但不少于3人,故x=3或4.

故選C

【點(diǎn)睛】

本題考查必然事件、不可能事件、隨機(jī)事件的性質(zhì)的靈活運(yùn)用.

10.下列事件:①任取這三條線段,這三條線段恰好組成直角三角形;②從一個(gè)三角形的三

個(gè)頂點(diǎn)各任畫一條射線,這三條射線交于一點(diǎn);③實(shí)數(shù)“,都不為0,但"+從=0;④明

年12月28日的最高氣溫高于今年12月28日的最高氣溫.其中為隨機(jī)事件的是()

A.①②?④B.???C.①??D.②③?

【答案】B

【解析】

根據(jù)隨機(jī)事件的基本概念,逐項(xiàng)判定,即可求解,得到答案.

【詳解】

由題意,對于①中,任取三條線段,這三條線段可能組成直角三角形,也可能組不成直角三

角形,故①為隨機(jī)事件:

對于②中,從一個(gè)三角形的三個(gè)頂點(diǎn)各任畫一條射線,三條射線可能不相交、交于一點(diǎn)、交

于兩點(diǎn)、交天三點(diǎn),故②為隨機(jī)事件;

對于③中,若實(shí)數(shù)力都不為.則/4材一定不等于0.故③為不可能事件:

對于④中,由于明天12月28還未到來,故明年12月28日的最高氣溫可能高于今年12月

28日的最高氣溫,也可能低于今年12月28日的最高氣溫,還可能等于今年12月28日的

最高氣溫,故④為隨機(jī)事件.

故選:B.

【點(diǎn)睛】

本題主要考查了隨機(jī)事件基本概念及應(yīng)用,其中解答中熟記隨機(jī)事件的基本概念,逐項(xiàng)判定

是解答的關(guān)健,屬于基礎(chǔ)題.

11.下列事件是確定事件的是()

A.2022年世界杯足球賽期間不下雨

B.沒有水,種子發(fā)芽

C.對任意%eR,有x+l>2工

D.拋擲一-枚硬幣,正面向上

【答案】B

【解析】

根據(jù)確定事件的定義判斷即可'’

【詳解】

解:不可能事件和必然事件統(tǒng)稱確定事件,對于A,2022年世界杯足球賽期間不下雨時(shí)隨

機(jī)事件:

對于B,沒有水,種子發(fā)芽為不可能事件,即為確定事件:

對于C,對任意xwR,有x+l>2x,為隨機(jī)事件;

對于D,拋擲--枚硬幣,正面向上,為隨機(jī)事件:

故選:B

【點(diǎn)睛】本題考查確定事件的概念的理解,屬于基礎(chǔ)題.

12.從I,2,3,4這4個(gè)數(shù)中,任取2個(gè)數(shù)求和,那么“這2個(gè)數(shù)的和大于4”包含的樣本點(diǎn)

數(shù)為()

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】C

【解析】

【分析】

列出2個(gè)數(shù)的和大于4的樣本點(diǎn)即可求解.

【詳解】

從1,2,3,4這4個(gè)數(shù)中,任取2個(gè)數(shù)求和,

則試驗(yàn)的樣本空間為0={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

其中“這2個(gè)數(shù)的和大干4”包含的樣本點(diǎn)有:(1.4).(2.3).(2.4).(3.4),共4個(gè).

故選:C.

13.下列說法正確的是()

A.某人打靶,射擊10次,擊中7次,那么此人中靶的概率為0.7

B.一位同學(xué)做擲硬幣試驗(yàn),擲6次,一定有3次“正面朝上”

C.某地發(fā)行福利彩票,回報(bào)率為47%,有人花了100元錢買彩票,一定會(huì)有47元的回報(bào)

D.概率等于I的事件不一定為必然事件

【答案】D

【解析】

【分析】

對四個(gè)命題分別進(jìn)行判斷即可得出結(jié)論

【詳解】

A,某人打靶,射擊10次,擊中7次,那么此人中靶的概率不一定為0.7,是一個(gè)隨機(jī)事件,

故錯(cuò)誤

B,是一個(gè)隨機(jī)事件,一位同學(xué)做擲硬幣試驗(yàn),擲6次,不一定有3次“正面朝上”,故錯(cuò)誤

C,是一個(gè)隨機(jī)事件,買這種彩票,中獎(jiǎng)或者不中獎(jiǎng)都有可能?但事先無法預(yù)料,故錯(cuò)誤

D,止確,比如說在0和5之間隨機(jī)取?個(gè)實(shí)數(shù),這個(gè)數(shù)不等十3.35264的概率是1,但不是

必然事件,故正確

綜上所述,故選D

【點(diǎn)睛】

本題考查了事件發(fā)生的概率問題、必然事件,只要按照其定義進(jìn)行判定即可,較為簡單

14.分別標(biāo)有數(shù)字1,2,3,4的4張卡片,從這4張卡片中隨機(jī)抽取2張卡片,則取出的2張卡

片上的數(shù)字之和為奇數(shù)的取法數(shù)為()

A.2B.3C.4D.6

【答案】C

【解析】

【詳解】

由題意知,從這4張卡片中隨機(jī)抽取2張卡片,取出的2張卡片上的數(shù)字之和為奇數(shù)包括

(1,2),(1,4),(2,3),(3,4),共有4種結(jié)果.故選C.

15.從12個(gè)同類產(chǎn)品(其中10個(gè)是正品,2個(gè)是次品)中任意抽取3個(gè)的必然事件是()

A.3個(gè)都是正品B.至少有1個(gè)是次品C.3個(gè)都是次品D.至少有1個(gè)是正品

【答案】D

【解析】

【詳解】

試題分析:在一定條件下一定發(fā)生的事件,叫做必然事件.從12件同類產(chǎn)品中,其中10

件是正品,2件是次品,任意抽取3件,其中至少有一件是正品,故選D.

考點(diǎn):本題主要考查必然事件的概念.

點(diǎn)評(píng):在一定條件下一定發(fā)生的事件,叫做必然事件.

題組B能力提升練

1.(多選)在25件同類產(chǎn)品中,有2件次品,從中任取3件產(chǎn)品,其中不是隨機(jī)事件的是

()

A.3件都是止品B.至少有1件次品

C.3件都是次品D.至少有1件正品

【答案】CD

【解析】

【分析】

根據(jù)題意25件產(chǎn)品中只有2件次品,所以不可能做出3件都是次品,H至少有I件止品,

即可得解.

【詳解】

25件產(chǎn)品中只有2件次品,所以不可能取出3件都是次品,

則”3件都是次品”不是隨機(jī)事件,是不可能事件,

乂25件產(chǎn)品中只有2件次品,從中任取3件產(chǎn)品,則“至少有1件正品”為必然事件,

而A,B是隨機(jī)事件,

故選:CD

2.(多選)袋中裝有標(biāo)號(hào)分別為1,3,5,7的四個(gè)相同的小球,從中取出兩個(gè),下列事件

是樣本點(diǎn)的是()

A.取出的兩球標(biāo)號(hào)為3和7

B.取出的兩球標(biāo)號(hào)的和為4

C.取出的兩球標(biāo)號(hào)都大于3

D.取出的兩球標(biāo)號(hào)的和為8

【答案】ABC

【解析】

【分析】

根據(jù)樣本點(diǎn)的定義逐一判斷四個(gè)選項(xiàng)的正誤即可得正確選項(xiàng).

【詳解】

對于A:取出的兩球標(biāo)號(hào)為3和7是樣本點(diǎn),故選項(xiàng)A正確:

對于B:取出的兩球標(biāo)號(hào)的和為4,指取出的兩球標(biāo)號(hào)為I和3,是樣本點(diǎn),故選項(xiàng)B正確:

對于C:取出的兩球標(biāo)號(hào)都大于3,指取出的兩球標(biāo)號(hào)為5和7,是樣本點(diǎn),故選項(xiàng)C正確:

對于D:取出的兩球標(biāo)號(hào)的和為8包括取出的兩球標(biāo)號(hào)為I和7、3和5,是兩個(gè)樣本點(diǎn),

故選項(xiàng)D不正確:

故選:ABC.

3.(多選)已知集合A是集合8的真子集,下列關(guān)于非空集合A,"的四個(gè)命題:

①若任取xeA,則X€8是必然事件:

②若任取則是不可能事件;

③若任取則%wA是隨機(jī)事件:

④若任取x任心則A是必然事件.

其中正確的命題是()

A.①B.②C.③D.④

【答案】ACD

【解析】

【分析】

根據(jù)集合A是集合/3的真子集,可知集合A中的元素都在集合8中,集合。中存在元素不是

集合A中的元素,再根據(jù)隨機(jī)事件,必然事件,不可能事件的定義判斷即可求解.

【詳解】

因?yàn)榧螦是集合8的真子集,所以集合A中的元素都在集合8中,集合8中存在元素不是

集合A中的兀素,作出其韋恩圖如圖:

對于①:集合A中的任何一個(gè)元素都是集合8中的元素,任取XWA,則XW8是必然事件,

故①正確:

對于②:任取尤史A,則xw4是隨機(jī)事件,故②不正確:

對廣③:因?yàn)榧螦是集合5的真子集,集合5中存在元素不是集合A中的元素,集合5中

也存在集合A中的元素,所以任取則xwA是隨機(jī)事件,故③正確:

對于④:因?yàn)榧螦中的任何一個(gè)元素都是集合B中的元素,任取則是必然事

件,故④正確:所以①③④正確,

故選:ACD.

4.(多選)下列事件是隨機(jī)事件的是()

A.函數(shù)凡r)=F-2r+a的圖象關(guān)于直線x=l對稱

B.某人給其朋友打電話,卻忘記了朋友電話號(hào)碼的最后一個(gè)數(shù)字,就隨意撥了一個(gè)數(shù)字,

恰巧是朋友的電話號(hào)碼

C.直線丁=依+6是定義在R上的增函數(shù)

D.某人購買福利彩票一注,中獎(jiǎng)500萬元

【答案】BCD

【解析】

【分析】

根據(jù)必然事件,隨機(jī)事件的特點(diǎn),逐項(xiàng)判斷,求出二次函數(shù)的對稱軸;隨機(jī)撥了一個(gè)數(shù)字;

及的正負(fù)決定了函數(shù)的增減性;以及彩票的特點(diǎn),買了一注就中獎(jiǎng):即可確定隨機(jī)事件和必

然事件.

【詳解】

A.根據(jù)二次函數(shù)廣,的對稱軸為一5’可得期"—+〃圖像關(guān)于

*?=1對稱,是必然事件:

B.因?yàn)橥涀詈笠粋€(gè)數(shù)字,隨意撥了一個(gè)數(shù)字,故是隨機(jī)事件:

C.因?yàn)?的不確定,所以也有可能是減函數(shù);

D.彩票由很多張,買了一張中獎(jiǎng),當(dāng)然是隨機(jī)事件:

所以A為必然事件;B,C,D為隨機(jī)事件.

故選:BCD

5.先后拋擲兩枚質(zhì)地均勻的骰子,骰子朝上的面的點(diǎn)數(shù)分別為x,y,則事件“朝上的面的

點(diǎn)數(shù)X,V滿足iog7A>'=1”包含的樣本點(diǎn)有.

【答案】(I,2),(2,4),(3,6).

【解析】

【分析】

利用列舉法求解..

【詳解】

先后拋擲兩枚質(zhì)地均勻的骰子,骰子朝上的面的點(diǎn)數(shù)分別為-),,

則事件“朝上的面的點(diǎn)數(shù)x,『滿足log緲=1”包含的樣本點(diǎn)有(1,2),(2,4),(3,6).

故答案為:(1,2),(2,4),(3,6).

6.給出下列事件:

①函數(shù)),=10"%(。<”<1)在定義域內(nèi)為增函數(shù);

②小學(xué)生和張怡寧打乒乓球,張怡寧勝利;

③一所學(xué)校共有998名學(xué)生,至少有3名學(xué)生的生日相同;

④若集合A,B,。滿足AU8,則AqC;

⑤在標(biāo)準(zhǔn)大氣壓下,河流在2?!鏁r(shí)結(jié)冰:

⑥從1,3,9中任選兩數(shù)相加,其和為偶數(shù).

其中屬于隨機(jī)事件的是,屬于必然事件的是,屬于不可能事件的是(填

序號(hào)).

【答案】②?@??@

【解析】

【分析】

根據(jù)必然事件,隨機(jī)事件和不可能事件的概念逐項(xiàng)判定可得出結(jié)果.

【詳解】

①中函數(shù)應(yīng)為單調(diào)減函數(shù),說法不正確,故為不可能事件;

②中可能張怡宇勝利也可能小學(xué)生勝利,故為隨機(jī)事件;

③中998大于365的兩倍,說法正確,故為必然事件:

根據(jù)集合的包含關(guān)系,④中說法正確,故為必然事件:

⑤中的說法不止確,故為不可能事件;

⑥中任意兩奇數(shù)和均為偶數(shù),說法正確,故為必然事件.

故答案為:②:③??:①⑤.

7.從1,2,3,4,5中隨機(jī)取三個(gè)不同的數(shù),則其和為奇數(shù)這一事件包含的樣本點(diǎn)個(gè)數(shù)為

【答案】4

【解析】

【分析】

直接列舉基本事件即可.

【詳解】

從1,2,3,4,5中隨機(jī)取三個(gè)不同的數(shù)有(1,2,3),(1,2,4),(I,2,5),(I,3,4),

(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5).(3,4,5)共10種情況,

其中(I,2,4),(I,3,5),(2,3,4),(2,4,5)中三個(gè)數(shù)字之和為奇數(shù),共有4種.

故答案為:4.

8.將一枚骰子擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別為江c,則方程『+反什仁0有實(shí)數(shù)根的樣本

點(diǎn)個(gè)數(shù)為.

【答案】19

【解析】

【分析】

先根據(jù)題中的條件可得加24c,列出所有滿足條件的情況即可.

【詳解】

一枚骰子擲兩次,先后出現(xiàn)的點(diǎn)數(shù)構(gòu)成的樣本點(diǎn)共36個(gè),

其中方程有實(shí)根的充要條件為〃2工4",得〃

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論