版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題卷(附答案)一、解答題1.(1)如圖1,分別把兩個邊長為的小正方形沿一條對角線裁成4個小三角形拼成一個大正方形,則大正方形的邊長為______;(2)若一個圓的面積與一個正方形的面積都是,設(shè)圓的周長為.正方形的周長為,則______(填“”,或“”,或“”)(3)如圖2,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?2.如圖,用兩個面積為的小正方形拼成一個大的正方形.(1)則大正方形的邊長是;(2)若沿著大正方形邊的方向裁出一個長方形,能否使裁出的長方形紙片的長寬之比為,且面積為?3.如圖,在網(wǎng)格中,每個小正方形的邊長均為1,正方形的頂點都在網(wǎng)格的格點上.(1)求正方形的面積和邊長;(2)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫出正方形四個頂點的坐標(biāo).4.工人師傅準(zhǔn)備從一塊面積為36平方分米的正方形工料上裁剪出一塊面積為24平方分米的長方形的工件.(1)求正方形工料的邊長;(2)若要求裁下的長方形的長寬的比為4:3,問這塊正方形工料是否滿足需要?(參考數(shù)據(jù):,)5.如圖,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個直角三角形,以數(shù)軸的-1點為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點A,那么點A表示的數(shù)是多少?點A表示的數(shù)的相反數(shù)是多少?(3)你能把十個小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長二、解答題6.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達(dá)直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.7.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.8.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.9.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)10.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關(guān)系.三、解答題11.(1)光線從空氣中射入水中會產(chǎn)生折射現(xiàn)象,同時光線從水中射入空氣中也會產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據(jù)光學(xué)知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產(chǎn)生反射現(xiàn)象,由光學(xué)知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點A、C,分別引兩條射線、.,,射線、分別繞A點,C點以1度/秒和3度/秒的速度同時順時針轉(zhuǎn)動,設(shè)時間為t,在射線轉(zhuǎn)動一周的時間內(nèi),是否存在某時刻,使得與平行?若存在,求出所有滿足條件的時間t.12.如圖1,點O在上,,射線交于點C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點E,則______;(3)若將繞點O逆時針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請說明你的結(jié)論.13.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì)來求∠APC.(1)按小明的思路,易求得∠APC的度數(shù)為度;(2)如圖3,AD∥BC,點P在射線OM上運動,當(dāng)點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;(3)在(2)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.14.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉(zhuǎn).(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉(zhuǎn)一周(0°旋轉(zhuǎn)360°),問旋轉(zhuǎn)時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速3°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速2°/秒,在兩個三角板旋轉(zhuǎn)過程中,(PC轉(zhuǎn)到與PM重合時,兩三角板都停止轉(zhuǎn)動).設(shè)兩個三角板旋轉(zhuǎn)時間為t秒,以下兩個結(jié)論:①為定值;②∠BPN+∠CPD為定值,請選擇你認(rèn)為對的結(jié)論加以證明.15.如圖1,D是△ABC延長線上的一點,CEAB.(1)求證:∠ACD=∠A+∠B;(2)如圖2,過點A作BC的平行線交CE于點H,CF平分∠ECD,F(xiàn)A平分∠HAD,若∠BAD=70°,求∠F的度數(shù).(3)如圖3,AHBD,G為CD上一點,Q為AC上一點,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN與∠ACB的關(guān)系,說明理由.四、解答題16.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當(dāng)點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.17.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當(dāng),,則__________.當(dāng),時,則__________.當(dāng),時,則__________.當(dāng),時,則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關(guān)系嗎?請直接寫出你發(fā)現(xiàn)的結(jié)論.18.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補(bǔ)角的平分線,BP是∠ABO的鄰補(bǔ)角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.19.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).20.閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).【參考答案】一、解答題1.(1);(2)<;(3)不能,理由見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進(jìn)而可求得圓和正方形的解析:(1);(2)<;(3)不能,理由見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進(jìn)而可求得圓和正方形的周長,利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長方形的長邊,與正方形邊長比較大小即可;【詳解】解:(1)∵小正方形的邊長為1cm,∴小正方形的面積為1cm2,∴兩個小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,設(shè)大正方形的邊長為xcm,∴,∴∴大正方形的邊長為cm;(2)設(shè)圓的半徑為r,∴由題意得,∴,∴,設(shè)正方形的邊長為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵正方形的面積為900cm2,∴正方形的邊長為30cm∵長方形紙片的長和寬之比為,∴設(shè)長方形紙片的長為,寬為,則,整理得:,∴,∴,∴,∴長方形紙片的長大于正方形的邊長,∴不能裁出這樣的長方形紙片.【點睛】本題通過圓和正方形的面積考查了對算術(shù)平方根的應(yīng)用,主要是對學(xué)生無理數(shù)運算及比較大小進(jìn)行了考查.2.(1);(2)無法裁出這樣的長方形.【分析】(1)先計算兩個小正方形的面積之和,在根據(jù)算術(shù)平方根的定義,即可求解;(2)設(shè)長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小解析:(1);(2)無法裁出這樣的長方形.【分析】(1)先計算兩個小正方形的面積之和,在根據(jù)算術(shù)平方根的定義,即可求解;(2)設(shè)長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小即可.【詳解】解:(1)由題意得,大正方形的面積為200+200=400cm2,∴邊長為:;根據(jù)題意設(shè)長方形長為cm,寬為cm,由題:則長為無法裁出這樣的長方形.【點睛】本題考查了算術(shù)平方根,根據(jù)題意列出算式(方程)是解決此題的關(guān)鍵.3.(1)面積為29,邊長為;(2),,,,圖見解析.【分析】(1)面積等于一個大正方形的面積減去四個直角三角形的面積,再利用算術(shù)平方根定義求得邊長即可;(2)建立適當(dāng)?shù)淖鴺?biāo)系后寫出四個頂點的坐標(biāo)解析:(1)面積為29,邊長為;(2),,,,圖見解析.【分析】(1)面積等于一個大正方形的面積減去四個直角三角形的面積,再利用算術(shù)平方根定義求得邊長即可;(2)建立適當(dāng)?shù)淖鴺?biāo)系后寫出四個頂點的坐標(biāo)即可.【詳解】解:(1)正方形的面積,正方形邊長為;(2)建立如圖平面直角坐標(biāo)系,則,,,.【點睛】本題考查了算術(shù)平方根及坐標(biāo)與圖形的性質(zhì)及割補(bǔ)法求面積,從圖形中整理出直角三角形是進(jìn)一步解題的關(guān)鍵.4.(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(解析:(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(1)正方形工料的邊長為分米;(2)設(shè)長方形的長為4a分米,則寬為3a分米.則,解得:,長為,寬為∴滿足要求.【點睛】本題主要考查了算術(shù)平方根及實數(shù)大小比較,用了轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學(xué)問題.5.(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點A表示的數(shù)為:;點A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點:1.作圖—應(yīng)用與設(shè)計作圖;2.圖形的剪拼.二、解答題6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.8.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.9.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進(jìn)行分類討論:如圖1,當(dāng)點在的左側(cè)時,,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點在的左側(cè)時,;當(dāng)點在的右側(cè)時,可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;過點作,,,,,,;(3)①如圖3,若當(dāng)點在的左側(cè)時,,,,分別平分和,,,;如圖4,當(dāng)點在的右側(cè)時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識點,作輔助線后能求出各個角的度數(shù),是解此題的關(guān)鍵.10.(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.解析:(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質(zhì).熟練運用平行線性質(zhì)和判定,添加適當(dāng)輔助線是關(guān)鍵.三、解答題11.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側(cè),分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯角相等列式計算即可得解;②CD旋轉(zhuǎn)到與AB都在EF的右側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解;③CD旋轉(zhuǎn)到與AB都在EF的左側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉(zhuǎn)到與AB都在EF的右側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉(zhuǎn)到與AB都在EF的左側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時t>105,∴此情況不存在.綜上所述,t為5秒或95秒時,CD與AB平行.【點睛】本題考查了平行線的判定與性質(zhì),光學(xué)原理,讀懂題意并熟練掌握平行線的判定方法與性質(zhì)是解題的關(guān)鍵,(3)要注意分情況討論.12.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時,∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時,OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時,如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\算簡便.13.(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當(dāng)P在BA延長線時,∠CPD=∠β-∠α;當(dāng)P在AB延長線上時,∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質(zhì)求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當(dāng)P在BA延長線時,∠CPD=∠β-∠α;當(dāng)P在AB延長線上時,∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質(zhì)求∠APC即可;(2)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【詳解】解:(1)過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案為110°;(2)∠CPD=∠α+∠β,理由是:如圖3,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)當(dāng)P在BA延長線時,∠CPD=∠β-∠α,理由是:如圖4,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)P在AB延長線時,∠CPD=∠α-∠β,理由是:如圖5,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點睛】本題考查了平行線的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力,題目是一道比較典型的題目,分類討論是解題的關(guān)鍵.14.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時的旋轉(zhuǎn)時間與相同;(2)分兩種情況討論:當(dāng)在上方時,當(dāng)在下方時,①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當(dāng)BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為3秒;如圖1﹣2,當(dāng)PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為180°+30°=210°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為21秒,如圖1﹣3,當(dāng)PA∥BD時,即點D與點C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為90°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為9秒,如圖1﹣4,當(dāng)PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為90°+180°=270°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為27秒,如圖1﹣5,當(dāng)AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為60°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為6秒,如圖1﹣6,當(dāng)時,∴三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為秒,如圖1﹣7,當(dāng)AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點A在MN上,∴三角板PAC繞點P逆時針旋轉(zhuǎn)的角度為180°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為18秒,當(dāng)時,如圖1-3,1-4,旋轉(zhuǎn)時間分別為:,綜上所述:當(dāng)t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當(dāng)在上方時,①正確,理由如下:設(shè)運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結(jié)論錯誤.當(dāng)在下方時,如圖,①正確,理由如下:設(shè)運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結(jié)論錯誤.綜上:①正確,②錯誤.【點睛】本題考查的是角的和差倍分關(guān)系,平行線的性質(zhì)與判定,角的動態(tài)定義(旋轉(zhuǎn)角)的理解,掌握分類討論的思想是解題的關(guān)鍵.15.(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據(jù)角解析:(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據(jù)角平分線的定義得出∠FCD=∠ECD,∠HAF=∠HAD,進(jìn)而得出∠F=(∠HAD+∠ECD),然后根據(jù)平行線的性質(zhì)得出∠HAD+∠ECD的度數(shù),進(jìn)而可得出答案;(3)根據(jù)平行線的性質(zhì)及角平分線的定義得出,,,再通過等量代換即可得出∠MQN=∠ACB.【詳解】解:(1)∵CEAB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,F(xiàn)A平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CHAB,∴∠ECD=∠B,∵AHBC,∴∠B+∠HAB=180°,∵∠BAD=70°,,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠ACB,理由如下:平分,.平分,.,.∴∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180°﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.【點睛】本題主要考查平行線的性質(zhì)和角平分線的定義,掌握平行線的性質(zhì)和角平分線的定義是解題的關(guān)鍵.四、解答題16.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時;②當(dāng)點P在AB上方時;③當(dāng)點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.17.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時,;當(dāng)時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時,;當(dāng)時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時,即時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時,;當(dāng)時,.【點睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.18.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大小.第(2)題求∠P的大小,用鄰補(bǔ)角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.19.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026春招:揚子江藥業(yè)試題及答案
- 2026年橋梁工程技術(shù)交底與監(jiān)理要點
- 2026春招:信達(dá)資產(chǎn)筆試題及答案
- 2026年年會游戲模板素材
- 2026春招:濰柴動力面試題及答案
- 貨運公司交通安全課件
- 醫(yī)療行業(yè)市場分析指標(biāo)
- 醫(yī)療健康產(chǎn)業(yè)產(chǎn)業(yè)鏈分析
- 醫(yī)療設(shè)備智能化發(fā)展研究
- 貨品安全培訓(xùn)計劃課件
- 《2024消費者金融知識學(xué)習(xí)偏好及行業(yè)宣教洞察報告》
- 大跨度倒三角管桁架施工方案
- 急性腦卒中的診斷與治療
- 健合集團(tuán)在線測評原題
- 2024年河北省中考?xì)v史試題卷(含答案逐題解析)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 人教版小學(xué)六年級下冊數(shù)學(xué)教材習(xí)題
- 頸椎病-小講課
- 2022年版煤礦安全規(guī)程
- 文旅夜游燈光方案
- GB/Z 43280-2023醫(yī)學(xué)實驗室測量不確定度評定指南
評論
0/150
提交評論