青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁(yè)
青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁(yè)
青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁(yè)
青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁(yè)
青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

青海西寧市普通高中2025年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開式中的系數(shù)為A5 B.10C.20 D.402.為迎接第24屆冬季奧運(yùn)會(huì),某校安排甲、乙、丙、丁、戊共5名學(xué)生擔(dān)任冰球、冰壺和短道速滑三個(gè)項(xiàng)目的志愿者,每個(gè)比賽項(xiàng)目至少安排1人,每人只能安排到1個(gè)項(xiàng)目,則所有排法的總數(shù)為()A.60 B.120C.150 D.2403.如圖是一個(gè)程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.54.已知命題p:,,則命題p的否定為()A., B.,C., D.,5.的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和76.若函數(shù),則()A. B.C.0 D.17.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為()A. B.C. D.8.阿基米德曾說(shuō)過(guò):“給我一個(gè)支點(diǎn),我就能撬動(dòng)地球”.他在做數(shù)學(xué)研究時(shí),有一個(gè)有趣的問(wèn)題:一個(gè)邊長(zhǎng)為2的正方形內(nèi)部挖了一個(gè)內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉(zhuǎn)一周形成幾何體,則該旋轉(zhuǎn)體的體積為()A. B.C. D.9.已知函數(shù),若在處取得極值,且恒成立,則實(shí)數(shù)的最大值為()A. B.C. D.10.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無(wú)極大值,極小值為-5C.極大值為27,無(wú)極小值 D.無(wú)極大值,無(wú)極小值11.已知雙曲線,過(guò)點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.312.已知函數(shù),則等于()A.0 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰直角△ABC中,,點(diǎn)P是邊AB上異于A、B的一點(diǎn),光線從點(diǎn)P出發(fā),經(jīng)BC、CA反射后又回到原點(diǎn)P.若光線QR經(jīng)過(guò)△ABC的內(nèi)心,則___________.14.如圖的一系列正方形圖案稱為謝爾賓斯基地毯,圖案的做法是:把一個(gè)正方形分成9個(gè)全等的小正方形,對(duì)中間的一個(gè)小正方形進(jìn)行著色得到第1個(gè)圖案(圖1);在第1個(gè)圖案中對(duì)沒(méi)有著色的小正方形再重復(fù)以上做法得到第2個(gè)圖案(圖2);以此類推,每進(jìn)行一次操作,就得到一個(gè)新的正方形圖案,設(shè)原正方形的邊長(zhǎng)為1,記第n個(gè)圖案中所有著色的正方形的面積之和為,則數(shù)列的通項(xiàng)公式______15.已知雙曲線左、右焦點(diǎn)分別為,,點(diǎn)P是雙曲線左支上一點(diǎn)且,則______16.已知雙曲線的左、右焦點(diǎn)分別為、,直線與的左、右支分別交于點(diǎn)、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長(zhǎng)為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由18.(12分)已知O為坐標(biāo)原點(diǎn),點(diǎn),設(shè)動(dòng)點(diǎn)W到直線的距離為d,且,.(1)記動(dòng)點(diǎn)W的軌跡為曲線C,求曲線C的方程;(2)若直線l與曲線C交于A,B兩點(diǎn),直線與曲線C交于,兩點(diǎn),直線l與的交點(diǎn)為P(P不在曲線C上),且,設(shè)直線l,的斜率分別為k,.求證:為定值.19.(12分)三棱錐中,,,,直線與平面所成的角為,點(diǎn)在線段上.(1)求證:;(2)若點(diǎn)在上,滿足,點(diǎn)滿足,求實(shí)數(shù)使得二面角的余弦值為.20.(12分)已知數(shù)列的前n項(xiàng)和,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),,求數(shù)列的前n項(xiàng)和21.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.22.(10分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,圓:過(guò)橢圓的三個(gè)頂點(diǎn),過(guò)點(diǎn)的直線(斜率存在且不為0)與橢圓交于兩點(diǎn)(1)求橢圓的標(biāo)準(zhǔn)方程(2)證明:在軸上存在定點(diǎn),使得為定值,并求出定點(diǎn)的坐標(biāo)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】首先根據(jù)二項(xiàng)展開式的各項(xiàng)系數(shù)和,求得,再根據(jù)二項(xiàng)展開式的通項(xiàng)為,求得,再求二項(xiàng)展開式中的系數(shù).【詳解】因?yàn)槎?xiàng)展開式的各項(xiàng)系數(shù)和,所以,又二項(xiàng)展開式的通項(xiàng)為=,,所以二項(xiàng)展開式中的系數(shù)為.答案選擇B【點(diǎn)睛】本題考查二項(xiàng)式展開系數(shù)、通項(xiàng)等公式,屬于基礎(chǔ)題2、C【解析】結(jié)合排列組合的知識(shí),分兩種情況求解.【詳解】當(dāng)分組為1人,1人,3人時(shí),有種,當(dāng)分組為1人,2人,2人時(shí)有種,所以共有種排法.故選:C3、B【解析】程序框圖中的循環(huán)結(jié)構(gòu),一般需重復(fù)計(jì)算,根據(jù)判斷框中的條件,確定何時(shí)終止循環(huán),輸出結(jié)果.【詳解】初始值:,當(dāng)時(shí),,進(jìn)入循環(huán);當(dāng)時(shí),,進(jìn)入循環(huán);當(dāng)時(shí),,終止循環(huán),輸出的值為3.故選:B4、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.5、A【解析】由二項(xiàng)展開的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A6、A【解析】構(gòu)造函數(shù),再用積的求導(dǎo)法則求導(dǎo)計(jì)算得解.【詳解】令,則,求導(dǎo)得:,所以.故選:A7、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)?,則,由勾股定理得,即,整理得,故.故選:A.8、B【解析】根據(jù)題意,結(jié)合圓柱和球的體積公式進(jìn)行求解即可.【詳解】由題意可知:該旋轉(zhuǎn)體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B9、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,所以,即得,故選:D10、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當(dāng)時(shí),,單調(diào)遞減.當(dāng)時(shí),,單調(diào)遞增.所以當(dāng)時(shí),取得極小值,極小值為,無(wú)極大值.故選:B11、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時(shí),與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時(shí),過(guò)點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過(guò)點(diǎn)的直線方程為或,①當(dāng)斜率存在時(shí)有,得(*)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有:,即又方程(*)的兩個(gè)不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時(shí),方程①無(wú)實(shí)數(shù)解故過(guò)點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時(shí),經(jīng)過(guò)點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A12、D【解析】先通過(guò)誘導(dǎo)公式將函數(shù)化簡(jiǎn),進(jìn)而求出導(dǎo)函數(shù),然后算出答案.【詳解】由題意,,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),求得△的內(nèi)心坐標(biāo),根據(jù)△內(nèi)心以及關(guān)于的對(duì)稱點(diǎn)三點(diǎn)共線,即可求得點(diǎn)的坐標(biāo),則問(wèn)題得解.【詳解】根據(jù)題意,以為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,關(guān)于軸的對(duì)稱點(diǎn)為,如下所示:則,不妨設(shè),則直線的方程為,設(shè)點(diǎn)坐標(biāo)為,則,且,整理得,解得,即點(diǎn),又;設(shè)△的內(nèi)切圓圓心為,則由等面積法可得,解得;故其內(nèi)心坐標(biāo)為,由及△的內(nèi)心三點(diǎn)共線,即,整理得,解得(舍)或,故.故答案為:.14、【解析】根據(jù)題意,歸納總結(jié),結(jié)合等比數(shù)列的前項(xiàng)和公式,即可求得的通項(xiàng)公式.【詳解】結(jié)合已知條件,歸納總結(jié)如下:第一個(gè)圖案中,著色正方形的面積即;第二個(gè)圖案中,新著色的正方形面積是,故著色正方形的面積即;第三個(gè)圖案中,新著色的正方形面積是,故著色正方形的面積即;第個(gè)圖案中,新著色的正方形面積是,故著色正方形的面積即.故.故答案為:.15、3【解析】根據(jù)雙曲線方程求出,再根據(jù)雙曲線的定義可知,即可得到、,再由正弦定理計(jì)算可得;【詳解】解:因?yàn)殡p曲線為,所以、,因?yàn)辄c(diǎn)P是雙曲線左支上一點(diǎn)且,所以,所以,,在中,由正弦定理可得,所以;故答案為:16、【解析】設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點(diǎn)、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),連接,如下圖所示:在雙曲線中,,,則,即點(diǎn)、,因?yàn)樵c(diǎn)為、的中點(diǎn),則四邊形為平行四邊形,所以,且,因?yàn)?,故、、三點(diǎn)共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,所以,,可得,由韋達(dá)定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問(wèn)1詳解】因?yàn)辄c(diǎn)S在底面ABCD上的射影為O,所以平面ABCD,因?yàn)樗倪呅蜛BCD是邊長(zhǎng)為的正方形,所以,又因?yàn)榈拿娣e為1,所以,,所以,因?yàn)椋c(diǎn)P為SD的中點(diǎn),所以,同理可得,因?yàn)?,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問(wèn)2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則,,,,假設(shè)在棱SD上存在點(diǎn)P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個(gè)法向量為,則,因?yàn)?,,所以,令,得,,因?yàn)槠矫鍭CD的一個(gè)法向量為,所以,化簡(jiǎn)得,解得或(舍),所以存在P點(diǎn)符合題意,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)18、(1)(2)證明見解析【解析】(1)設(shè)點(diǎn),由即所以化簡(jiǎn)即可得到答案.(2)設(shè),,設(shè)直線l的方程為:與(1)中W的軌跡方程聯(lián)立,得出韋達(dá)定理,求出,同理設(shè)直線的方程為:,得出,再根據(jù)從而可證明結(jié)論.【小問(wèn)1詳解】設(shè)點(diǎn),因?yàn)椋?,因?yàn)椋运运运运訡的方程為:【小問(wèn)2詳解】設(shè),,設(shè)直線l的方程為:,則由得:所以,,所以所以設(shè)直線的方程為:,則同理可得因所以即,即,即解得,即所以為定值.19、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質(zhì)可證得結(jié)論成立;(2)設(shè),以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可得出關(guān)于實(shí)數(shù)的等式,即可解得實(shí)數(shù)的值.【小問(wèn)1詳解】證明:因?yàn)?,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問(wèn)2詳解】解:設(shè),由(1)可知且,,因?yàn)槠矫妫?,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,由,取,則,由已知可得,解得.當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),二面角的平面角為銳角,合乎題意.綜上所述,.20、(1);(2)【解析】(1)將代入可求得.根據(jù)通項(xiàng)公式與前項(xiàng)和的關(guān)系,可得數(shù)列為等比數(shù)列,由等比數(shù)列的通項(xiàng)公式即可求得數(shù)列的通項(xiàng)公式.(2)由(1)可得數(shù)列的通項(xiàng)公式,代入中,結(jié)合裂項(xiàng)法求和即可得前n項(xiàng)和.【詳解】(1)當(dāng)時(shí),由得;當(dāng)時(shí),由得是首項(xiàng)為3,公比為3的等比數(shù)列當(dāng),滿足此式所以(2)由(1)可知,【點(diǎn)睛】本題考查了通項(xiàng)公式與前項(xiàng)和的關(guān)系,裂項(xiàng)法求和的應(yīng)用,屬于基礎(chǔ)題.21、(1);(2)不存在,理由見解析.【解析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問(wèn)2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過(guò)坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無(wú)實(shí)解,故不存在.22、(1);(2)見解析,定點(diǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論