廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題含解析_第1頁
廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題含解析_第2頁
廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題含解析_第3頁
廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題含解析_第4頁
廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市增城區(qū)鄭中均中學2025-2026學年高二上數學期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數為()A.13 B.14C.15 D.162.已知,則的最小值是()A.3 B.8C.12 D.203.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.4.某考點配備的信號檢測設備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發(fā),沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘5.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.6.閱讀如圖所示的程序框圖,運行相應的程序,輸出S的結果是()A.128 B.64C.16 D.327.設點P是函數圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數r的取值范圍為()A. B.C. D.8.已知直線與直線垂直,則()A. B.C. D.9.已知是等差數列的前項和,,,則的最小值為()A. B.C. D.10.春秋時期孔子及其弟子所著的《論語·顏淵》中有句話:“非禮勿視,非禮勿聽,非禮勿言,非禮勿動.”意思是:不符合禮的不看,不符合禮的不聽,不符合禮的不說,不符合禮的不做.“非禮勿聽”可以理解為:如果不合禮,那么就不聽.從數學角度來說,“合禮”是“聽”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件11.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+12.中國景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個精美的青花瓷花瓶,它的頸部(圖2)外形上下對稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉所形成的曲面,若該頸部中最細處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.40二、填空題:本題共4小題,每小題5分,共20分。13.在數列中,,,則數列中最大項的數值為__________14.函數在區(qū)間上的最小值為__________.15.設圓,圓,則圓有公切線___________條.16.已知莖葉圖記錄了甲、乙兩組各名學生在一次英語聽力測試中的成績(單位:分).已知甲組數據的中位數為,乙組數據的平均數為,則的值為__________.甲組乙組三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若在點處的切線與軸平行,求的值;(2)當時,求證:;(3)若函數有兩個零點,求的取值范圍18.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.19.(12分)已知平面直角坐標系上一動點滿足:到點的距離是到點的距離的2倍.(1)求點的軌跡方程;(2)若點與點關于直線對稱,求的最大值.20.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.21.(12分)已知拋物線的準線方程為(1)求C的方程;(2)直線與C交于A,B兩點,在C上是否存在點Q,使得直線QA,QB分別與y軸交于M,N兩點,且?若存在,求出點Q的坐標;若不存在,說明理由22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數列,根據題意,設共募捐了天,則,解得或(舍去),所以,故選:2、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A3、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.4、C【解析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續(xù)監(jiān)測的時長.【詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結束,因為到的距離為米,所以米,故監(jiān)測時長為分鐘故選:C.5、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設,聯(lián)立直線和拋物線方程得,所以.所以.故選:B6、C【解析】根據程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結果.【詳解】根據流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C7、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C8、D【解析】根據互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D9、C【解析】根據,可得,再根據,得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.10、B【解析】如果不合禮,那么就不聽.轉化為它的逆否命題.即可判斷出答案.【詳解】如果不合禮,那么就不聽的逆否命題為:如果聽,那么就合理.故“合禮”是“聽”的必要條件.故選:B.11、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B12、B【解析】設雙曲線方程為,根據已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因為雙曲線焦點在軸上,設雙曲線方程為由雙曲線的性質可知:該頸部中最細處直徑為實軸長,所以,可得,因為離心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據對稱性可知頸部最右點橫坐標為,將代入雙曲線可得,解得:,所以頸部高為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】用累加法求出通項,再由通項表達式確定最大項.【詳解】當時,,所以數列中最大項的數值為故答案為:14、【解析】先對函數求導判斷其單調性,然后利用單調性求函數的最小值【詳解】解:由,得,當且僅當時取等號,即取等號,因為,所以函數在區(qū)間上單調遞增,所以當時,函數取得最小值0,故答案為:015、2【解析】將圓轉化成標準式,結合圓心距判斷兩圓位置關系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:216、【解析】根據中位數、平均數的定義,結合莖葉圖進行計算求解即可.【詳解】根據莖葉圖可知:甲組名學生在一次英語聽力測試中的成績分別;乙組名學生在一次英語聽力測試中的成績分別,因為甲組數據的中位數為,所以有,又因為乙組數據的平均數為,所以有,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】(1)由可求得實數的值;(2)利用導數分析函數的單調性,求得,即可證得結論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構造函數,分析函數的單調性,求得的取值范圍,再構造,分析函數的單調性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當時,,該函數的定義域為,,令,其中,則,故函數在上遞減,因為,,所以,存在,使得,則,且,當時,,函數單調遞增,當時,,函數單調遞減,所以,,所以,當時,.【小問3詳解】解:函數的定義域為,.令,其中,則,所以,函數單調遞減,因為函數有兩個零點,等價于函數在上存在唯一的極值點,且為極大值點,且,即,所以,,令,其中,則,故函數在上單調遞增,又因為,由,可得,構造函數,其中,則,所以,函數在上單調遞增,故,因此,實數的取值范圍是.【點睛】方法點睛:利用導數證明不等式問題,方法如下:(1)直接構造函數法:證明不等式(或)轉化為證明(或),進而構造輔助函數;(2)適當放縮構造法:一是根據已知條件適當放縮;二是利用常見放縮結論;(3)構造“形似”函數,稍作變形再構造,對原不等式同解變形,根據相似結構構造輔助函數.18、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設直線的方程為,,,,,聯(lián)立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調遞增,所以,(當時,取等號),所以面積的最大值為.19、(1)(2)【解析】(1)直接法求動點的軌跡方程,設點,列方程即可.(2)點關于直線對稱的對稱點問題,可以先求出點到直線的距離最值的兩倍就是的距離,也可以求出點的軌跡方程直接求解的距離.【小問1詳解】設,由題意,得:,化簡得,所以點軌跡方程為【小問2詳解】方法一:設,因為點與點關于點對稱,則點坐標為,因為點在圓,即上運動,所以,所以點的軌跡方程為,所以兩圓的圓心分別為,半徑均為2,則.方法二:由可得:所以點的軌跡是以為圓心,2為半徑的圓軌跡的圓心到直線的距離為:20、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結果為【小問2詳解】是假命題,是真命題,則一真一假,結合(1)中所求,當真假時,與取交集,結果為;當假真時,與取交集,結果為,綜上:m的取值范圍是.21、(1)(2)見解析【解析】(1)根據準線方程得出拋物線方程;(2)聯(lián)立直線和拋物線方程,由韋達定理結合求解即可.【小問1詳解】【小問2詳解】設,聯(lián)立,得由,得,假設C上存在點Q,使得直,則又即存在點滿足條件.22、(1)證明見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論