營口市初一數(shù)學(xué)下冊相期末壓軸題易錯題模擬試題_第1頁
營口市初一數(shù)學(xué)下冊相期末壓軸題易錯題模擬試題_第2頁
營口市初一數(shù)學(xué)下冊相期末壓軸題易錯題模擬試題_第3頁
營口市初一數(shù)學(xué)下冊相期末壓軸題易錯題模擬試題_第4頁
營口市初一數(shù)學(xué)下冊相期末壓軸題易錯題模擬試題_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標(biāo)系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點(diǎn)滿足的面積等于6,求的值;(3)設(shè)線段交軸于C,動點(diǎn)E從點(diǎn)C出發(fā),在軸上以每秒1個單位長度的速度向下運(yùn)動,動點(diǎn)F從點(diǎn)出發(fā),在軸上以每秒2個單位長度的速度向右運(yùn)動,若它們同時出發(fā),運(yùn)動時間為秒,問為何值時,有?請求出的值.解析:(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點(diǎn)作直線軸,延長交于,設(shè)出點(diǎn)坐標(biāo),根據(jù)面積關(guān)系求出點(diǎn)坐標(biāo),再求出的長度,即可求出值;(3)先根據(jù)求出點(diǎn)坐標(biāo),再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點(diǎn),設(shè)的坐標(biāo)為,過作交直線于點(diǎn),連接,,,,解得,,,又點(diǎn)滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當(dāng)秒時,,,,,,,,解得或2.【點(diǎn)睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標(biāo)系的知識,三角形的面積,梯形面積等知識是解題的關(guān)鍵.2.如圖:在四邊形ABCD中,A、B、C、D四個點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.解析:(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個單位,縱坐標(biāo)加1;向左平移2個單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.3.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點(diǎn)E是CD邊上的一點(diǎn),且DE=2cm,動點(diǎn)P從A點(diǎn)出發(fā),以2cm/s的速度沿A→B→C→E運(yùn)動,最終到達(dá)點(diǎn)E.設(shè)點(diǎn)P運(yùn)動的時間為t秒.(1)請以A點(diǎn)為原點(diǎn),AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標(biāo)系,并用t表示出點(diǎn)P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點(diǎn)使△APE的面積等于20cm2時,若存在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.解析:(1)建立直角坐標(biāo)系見解析,當(dāng)0<t≤4時,即當(dāng)點(diǎn)P在線段AB上時,其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時,即當(dāng)點(diǎn)P在線段BC上時,其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時,即當(dāng)點(diǎn)P在線段CE上時,其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點(diǎn)P的坐標(biāo)分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點(diǎn)P的運(yùn)動速度分別求出點(diǎn)P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點(diǎn)P的坐標(biāo)以及,分別列出三個方程并解出此時t的值再進(jìn)行討論.【詳解】(1)正確畫出直角坐標(biāo)系如下:當(dāng)0<t≤4時,點(diǎn)P在線段AB上,此時P點(diǎn)的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時P點(diǎn)的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時,點(diǎn)P在線段BC上,此時P點(diǎn)的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時,點(diǎn)P在線段CE上,此時P點(diǎn)的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時,點(diǎn)P在線段AB上,,解得:t(s);∴P點(diǎn)的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時,點(diǎn)P在線段BC上,;∴;解得:t=6(s);∴點(diǎn)P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時,點(diǎn)P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點(diǎn)的坐標(biāo)為:P(,0)或P(8,4)時,△APE的面積等于.【點(diǎn)睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據(jù)動點(diǎn)的坐標(biāo)正確地求出三角形的底邊長度和高是解題的關(guān)鍵.4.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個單位長度,運(yùn)動時間為t秒,回答下列問題:①當(dāng)t=秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);③當(dāng)點(diǎn)P運(yùn)動到CD上時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.解析:(1)(-2,0);(2)①t=2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)①由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負(fù)方向平移3個單位得到三角形DEC,∵點(diǎn)A的坐標(biāo)是(1,0),∴點(diǎn)E的坐標(biāo)是(-2,0);故答案為:(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD,即t=2;∴當(dāng)t=2秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);故答案為:2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),坐標(biāo)與圖形的變化-平移,平行線的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.5.如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點(diǎn)C,點(diǎn)P是線段OC上一點(diǎn),連接BP,延長BP交AC于點(diǎn)當(dāng)時,求證:BP平分;提示:三角形三個內(nèi)角和等于如圖3,若,點(diǎn)E是點(diǎn)A與點(diǎn)B之間上一點(diǎn)連接CE,且CB平分問與有什么數(shù)量關(guān)系?請寫出它們之間的數(shù)量關(guān)系并請說明理由.解析:(1);;6;(2)證明見解析;(3)

,理由見解析.【詳解】分析:(1)求出CD的長度,再根據(jù)三角形的面積公式列式計算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;【解答】(1)解:如圖1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵點(diǎn)C(0,-4),D(-3,-4),∴CD=3,且CD∥x軸,∴△BCD的面積=×4×3=6;故答案為-4,-3,6.(2)如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如圖3中,結(jié)論:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,點(diǎn)睛:本題考查了坐標(biāo)與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識,熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.6.已知,AB∥DE,點(diǎn)C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點(diǎn)C作CF⊥BC交ED的延長線于點(diǎn)F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點(diǎn)G,連接GB并延長至點(diǎn)H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.解析:(1)證明見解析;(2);(3).【分析】(1)過點(diǎn)作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點(diǎn)作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點(diǎn)作,延長至點(diǎn),先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點(diǎn)作,,,,,即,,;(2)如圖,過點(diǎn)作,,,,,即,,,,,;(3)如圖,過點(diǎn)作,延長至點(diǎn),,,,,平分,平分,,由(2)可知,,,又,.【點(diǎn)睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點(diǎn),熟練掌握平行線的性質(zhì)是解題關(guān)鍵.7.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.8.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動,在動點(diǎn)A運(yùn)動的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動點(diǎn)A運(yùn)動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當(dāng)AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.9.已知,點(diǎn)為平面內(nèi)一點(diǎn),于.(1)如圖1,求證:;(2)如圖2,過點(diǎn)作的延長線于點(diǎn),求證:;(3)如圖3,在(2)問的條件下,點(diǎn)、在上,連接、、,且平分,平分,若,,求的度數(shù).解析:(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運(yùn)用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達(dá)式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進(jìn)而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.10.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).解析:(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點(diǎn)M作MQ∥AB,過點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.11.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).(1)直接寫出點(diǎn)E的坐標(biāo);D的坐標(biāo)(3)點(diǎn)P是線段CE上一動點(diǎn),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)(-2,0);(-3,0);(2)z=x+y.證明見解析.【分析】(1)依據(jù)平移的性質(zhì)可知BC∥x軸,BC=AE=3,然后依據(jù)點(diǎn)A和點(diǎn)C的坐標(biāo)可得到點(diǎn)E和點(diǎn)D的坐標(biāo);(2過點(diǎn)P作PF∥BC交AB于點(diǎn)F,則PF∥AD,然后依據(jù)平行線的性質(zhì)可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據(jù)角的和差關(guān)系進(jìn)行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負(fù)方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過點(diǎn)P作PF∥BC交AB于點(diǎn)F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了點(diǎn)的坐標(biāo)的特點(diǎn),平移得性質(zhì),平面坐標(biāo)系中點(diǎn)的坐標(biāo)和距離的關(guān)系,解本題的關(guān)鍵是由線段和部分點(diǎn)的坐標(biāo),得出其它點(diǎn)的坐標(biāo).12.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.13.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)解析:(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識點(diǎn)是解題的關(guān)鍵.14.已知、兩點(diǎn)的坐標(biāo)分別為,,將線段水平向右平移到,連接,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論