山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題含解析_第1頁
山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題含解析_第2頁
山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題含解析_第3頁
山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題含解析_第4頁
山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南市歷城區(qū)歷城第二中學2025年數(shù)學高二第一學期期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的導函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零2.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對3.已知拋物線的焦點為,為拋物線上一點,為坐標原點,且,則()A.4 B.2C. D.4.函數(shù)的導函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.5.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件6.在正方體ABCD-A1B1C1D1中,棱長為a,M,N分別為A1B和AC上的點,A1M=AN=,則MN與平面BB1C1C的位置關系是()A.相交 B.平行C.垂直 D.不能確定7.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.9.已知數(shù)列滿足,,,前項和()A. B.C. D.10.已知數(shù)列滿足,則()A.32 B.C.1320 D.11.在各項均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.7812.已知是兩條不同的直線,是兩個不同的平面,則下列結論正確的是()A.若,則 B.若,則C若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)拋物線的光學性質可知,從拋物線的焦點發(fā)出的光線經(jīng)該拋物線反射后與對稱軸平行,一條平行于對稱軸的光線經(jīng)該拋物線反射后會經(jīng)過拋物線的焦點.如圖所示,從沿直線發(fā)出的光線經(jīng)拋物線兩次反射后,回到光源接收器,則該光線經(jīng)過的路程為___________.14.如圖所示,奧林匹克標志由五個互扣的環(huán)圈組成,五環(huán)象征五大洲的團結.若從該奧林匹克標志的五個環(huán)圈中任取2個,則這2個環(huán)圈恰好相交的概率為___________.15.已知,為雙曲線的左、右焦點,過作的垂線分別交雙曲線的左、右兩支于B,C兩點(如圖).若,則雙曲線的漸近線方程為______16.寫出直線一個方向向量______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列是公比為q的等比數(shù)列,其前n項和為(1)若,,求數(shù)列的前n項和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對所構成的集合,18.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和19.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值20.(12分)《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值21.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程22.(10分)解答下列兩個小題:(1)雙曲線:離心率為,且點在雙曲線上,求的方程;(2)雙曲線實軸長為2,且雙曲線與橢圓的焦點相同,求雙曲線的標準方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)導函數(shù)的圖象,得到函數(shù)的單調區(qū)間與極值點,即可判斷;【詳解】解:由導函數(shù)的圖象可知,當時,當時,當時,當或時,則在上單調遞增,在上單調遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B2、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.3、B【解析】依題意可得,設,根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設,由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標運算,考查了求拋物線方程,屬于基礎題.4、C【解析】構造函數(shù),利用導數(shù)分析函數(shù)的單調性,將所求不等式變形為,結合函數(shù)的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)在上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.5、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.6、B【解析】建立空間直角坐標系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有利于空間向量判斷線面平行,屬于簡單題目.7、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當兩圓內切時,,解得或所以當,可得兩圓內切,當兩圓內切時,不能得出(可能)故“”是“兩圓內切”的充分不必要條件故選:B8、C【解析】根據(jù)題意求出P點坐標,代入橢圓方程中,可整理得到關于a,c的等式,進一步整理為關于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.9、C【解析】根據(jù),利用對數(shù)運算得到,再利用等比數(shù)列的前n項和公式求解.【詳解】解:因為,所以,則,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,故選:C10、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A11、D【解析】由等比數(shù)列的性質直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質可得:由,解得:;由可得:,所以.故選:D12、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】求出,利用拋物線上的點到焦點的距離等于到準線的距離可得答案.【詳解】由得,設,,由拋物線性質,與軸的交點即為拋物線的焦點,,,,所以,所以該光線經(jīng)過的路程為12.故答案為:12.14、【解析】利用古典概型求概率.【詳解】從該奧林匹克標志的五個環(huán)圈中任取2個,共有10種情況,其中這2個環(huán)圈恰好相交的情況有4種,則所求的概率.故答案為:.15、【解析】根據(jù)雙曲線的定義先計算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡得,解得,漸近線就為:.故答案為:.16、【解析】本題可先將直線的一般式化為斜截式,然后根據(jù)斜率即可得到直線的一個方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個方向向量可以寫為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計算可解得,進而計算可得,即可判斷結果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對所構成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項為公差為的等差數(shù)列,數(shù)列的前n項和.【小問2詳解】,,成等差數(shù)列,+=2,當時,+=,2,不符題意舍去,當時,.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有數(shù)對所構成的集合為.18、(1)證明見解析(2)【解析】(1)由與的關系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當時,,,當時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設等差數(shù)列的公差為,則,,,,,19、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角20、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉化到直角三角形求解即可【小問1詳解】因為PD⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因為PD=CD,點E是PC的中點,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點E是PC的中點,∴,∴【小問3詳解】如圖所示,在面BPC內,延長BC與FE交于點G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當面DEF與面ABCD所成二面角的大小為時,21、(1);(2)【解析】(1)利用拋物線的性質即可求解.(2)設直線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論