全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題含解析_第1頁
全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題含解析_第2頁
全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題含解析_第3頁
全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題含解析_第4頁
全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

全國一卷五省優(yōu)創(chuàng)名校2025年高二上數(shù)學期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,設,,,用基底表示向量,則()A. B.C. D.2.為調(diào)查學生的課外閱讀情況,學校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,23.如圖,D是正方體的一個“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當AC與PQ所成角為最小時,()A. B.C. D.24.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應填入()A.? B.?C.? D.?5.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關于去向的地點僅對一個).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南6.在正方體中中,,若點P在側面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.7.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.8.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.9.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.10.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標準方程為()A. B.C. D.11.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.12.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將某校全體高一年級學生期末數(shù)學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調(diào)查,采用按成績分層隨機抽樣,則應抽取成績不少于60分的學生人數(shù)為_______________.14.函數(shù)定義域為___________.15.已知拋物線的焦點坐標為,則該拋物線上一點到焦點的距離的取值范圍是___________.16.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標原點.若|F1F2|=6|OH|,則雙曲線C的方程為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當軸時,(1)求橢圓E的方程;(2)求的范圍18.(12分)已知數(shù)列的前n項和為,且,,數(shù)列滿足,.(1)求和的通項公式;(2)求數(shù)列{}的前n項和.19.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.20.(12分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達式(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值21.(12分)平行六面體,(1)若,,,,,,求長;(2)若以頂點A為端點的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值22.(10分)已知直線,,分別求實數(shù)的值,使得:(1);(2);(3)與相交.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B2、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.3、C【解析】根據(jù)題意,建立空間直角坐標系,求得AC與PQ夾角的余弦值關于點坐標的函數(shù)關系,求得角度最小時點的坐標,即可代值計算求解結果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標原點,建立空間直角坐標系如下所示:設,則,不妨設點的坐標為,則,,則,又,設直線所成角為,則,則,令,令,則,令,則,此時.故當時,取得最大值,此時最小,點,則,故,則故選:C.4、C【解析】本題為計算前項和,模擬程序,實際計算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項和.易知,則,令,解得.即前7項的和.為故判斷框中應填入“?”.故選:C.5、D【解析】根據(jù)題意,先假設甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設錯誤.假設乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設滿足題意,故甲去了云南.故選:D6、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A7、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C8、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C9、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C10、D【解析】設橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點在軸上,可設橢圓的方程為,因為橢圓C的離心率為,可得,又由,即,解得,又因為橢圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.11、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應用換元法令,結合對勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.12、B【解析】根據(jù)得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調(diào)查,利用樣本估計總體的思想,則應抽取成績不少于60分的學生人數(shù)為人故答案為:14、【解析】根據(jù)函數(shù)定義域的求法,即可求解.【詳解】解:,解得,故函數(shù)的定義域為:.故答案為:.15、【解析】根據(jù)題意,求得,得到焦點坐標,結合拋物線的定義,得到,根據(jù),求得,即可求解.【詳解】由拋物線的焦點坐標為,可得,解得,設拋物線上的任意一點為,焦點為,由拋物線的定義可得,因為,所以,所以拋物線上一點到焦點的距離的取值范圍是.故答案為:.16、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結合雙曲線的a,b,c的關系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進而得到答案.【小問1詳解】當軸時,取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當軸時,由(1)知:,所以,當AB斜率為k時,直線AB為,,消去y得,所以,,所以,綜上,的范圍是.18、(1);;(2)【解析】(1)求數(shù)列的通項公式主要利用求解,分情況求解后要驗證是否滿足的通項公式,將求得的代入整理即可得到的通項公式;(2)整理數(shù)列的通項公式得,依據(jù)特點采用錯位相減法求和試題解析:(1)∵,∴當時,.當時,.∵時,滿足上式,∴.又∵,∴,解得:.故,,.(2)∵,,∴①②由①-②得:∴,.考點:1.數(shù)列通項公式求解;2.錯位相減法求和【方法點睛】求數(shù)列的通項公式主要利用,分情況求解后,驗證的值是否滿足關系式,解決非等差等比數(shù)列求和問題,主要有兩種思路:其一,轉化的思想,即將一般數(shù)列設法轉化為等差或等比數(shù)列,這一思想方法往往通過通項分解(即分組求和)或錯位相減來完成,其二,不能轉化為等差等比數(shù)列的,往往通過裂項相消法,倒序相加法來求和,本題中,根據(jù)特點采用錯位相減法求和19、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直的性質(zhì)得出直線與平面垂直,進而得出平面;(2)建立空間直角坐標系即可求解.【小問1詳解】證明:因為平面平面,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點,建立如圖所示的空間直角坐標系因為,,,設所以,,,,由(1)知,平面所以為平面的法向量且因為直線與平面所成角的正弦值為所以解得:所以,又,,所以,,,設平面與平面的法向量分別為:,所以,令,則令,則,,即設平面與平面夾角為則所以平面與平面夾角的余弦值為.20、,因此.,當隔熱層修建厚時,總費用達到最小值70萬元【解析】解:(Ⅰ)設隔熱層厚度為,由題設,每年能源消耗費用為.再由,得,因此.而建造費用為最后得隔熱層建造費用與20年的能源消耗費用之和為(Ⅱ),令,即.解得,(舍去)當時,,當時,,故是的最小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論