版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆貴州省銅仁一中高二上數(shù)學(xué)期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.2.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點反射后經(jīng)過它的焦點.反之,從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達(dá)B所走過的路程為()A.8 B.10C.12 D.143.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=14.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或35.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.6.已知是邊長為6的等邊所在平面外一點,,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.7.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.8.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.9.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.10.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時,,則使得成立的的取值范圍是A. B.C D.11.某學(xué)校的校車在早上6:30,6:45,7:00到達(dá)某站點,小明在早上6:40至7:10之間到達(dá)站點,且到達(dá)的時刻是隨機(jī)的,則他等車時間不超過5分鐘的概率是()A. B.C. D.12.如圖,在三棱錐中,,,,點在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.14.直線與圓相交于兩點M,N,若滿足,則________15.若直線與直線相互平行,則實數(shù)___________.16.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實數(shù),求的最小值;(3)若,當(dāng)時,若不等式恒成立,求實數(shù)b的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)2021年年初有資金5千萬元,由于引進(jìn)了先進(jìn)生產(chǎn)設(shè)備,資金年平均增長率可達(dá)到.每年年底扣除下一年的消費基金1.5千萬元后,剩余資金投入再生產(chǎn).設(shè)從2021年的年底起,每年年底企業(yè)扣除消費基金后的剩余資金依次為,,,…(1)寫出,,,并證明數(shù)列是等比數(shù)列;(2)至少到哪一年的年底,企業(yè)的剩余資金會超過21千萬元?(lg18.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形,(1)證明:是的中點;(2)求二面角的大小19.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點D為圓心且與直線l相切的圓的方程20.(12分)已知點在拋物線()上,過點A且斜率為1直線與拋物線的另一個交點為B(1)求p的值和拋物線的焦點坐標(biāo);(2)求弦長21.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項公式:(2)設(shè).?dāng)?shù)列{}的前項和為,求證:22.(10分)如圖,在三棱柱中,面ABC,,,D為BC的中點(1)求證:平面;(2)若F為中點,求與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當(dāng)且僅當(dāng),即時取等號,所以故選:D2、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設(shè)光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點,作垂直于準(zhǔn)線于點,則,,,,故選:C3、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.4、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.5、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題6、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.7、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.8、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.9、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當(dāng)且僅當(dāng),時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.10、B【解析】構(gòu)造函數(shù),可知函數(shù)為奇函數(shù),利用導(dǎo)數(shù)分析出函數(shù)在上的單調(diào)性,并得出,然后分別在和解不等式,由此可得出不等式的解集.【詳解】構(gòu)造函數(shù),該函數(shù)的定義域為,由于函數(shù)為上的奇函數(shù),則,所以,函數(shù)為上的奇函數(shù),且,,.當(dāng)時,,此時,函數(shù)單調(diào)遞增,由,可得,解得;當(dāng)時,則函數(shù)單調(diào)遞增,由,可得,解得.綜上所述,使得成立的的取值范圍是.故選:B.【點睛】本題考查利用函數(shù)的單調(diào)性求解函數(shù)不等式,根據(jù)導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造合適的函數(shù)是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.11、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B12、D【解析】設(shè)線段的中點為,連接,過點在平面內(nèi)作,垂足為點,證明出平面,然后以點為坐標(biāo)原點,、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內(nèi)作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標(biāo)原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內(nèi),可設(shè),其中,且,從而,因為,則,所以,,故當(dāng)時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)易知,應(yīng)用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進(jìn)而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.14、【解析】由點到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:15、##【解析】由題意可得,從而可求出的值【詳解】因為直線與直線相互平行,所以,解得,故答案為:16、(1),;(2);(3)【解析】(1)根據(jù)韋達(dá)定理解求得答案;(2)根據(jù)題意,,進(jìn)而化簡,然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進(jìn)而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達(dá)定理得,,故,.【小問2詳解】由題意得,,所以,當(dāng)且僅當(dāng)時取等號.【小問3詳解】若,,不等式恒成立.當(dāng)時,,此時,即對于恒成立,單調(diào)遞減,此時,,所以;當(dāng)時,,此時,即即對于恒成立,在單調(diào)遞減,此時,所以;當(dāng)x=2時,.綜上所述:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,證明見解析(2)至少到2026年的年底,企業(yè)的剩余資金會超過21千萬元【解析】(1)由題意可知,,,,再結(jié)合等比數(shù)列的性質(zhì),即可求解(2)由(1)知,,則,令,再結(jié)合對數(shù)函數(shù)運算,即可求解【小問1詳解】依題意知,,,,,所以,又,所以是首項為3,公比為1.5的等比數(shù)列.【小問2詳解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企業(yè)的剩余資金會超過21千萬元18、(1)證明見解析;(2).【解析】(1)根據(jù)正棱柱的性質(zhì),結(jié)合線面垂直的判定定理、直角三角形的性質(zhì)、正三角形的性質(zhì)進(jìn)行證明即可;(2)根據(jù)線面垂直的判定定理和性質(zhì),結(jié)合二面角的定義進(jìn)行求解即可.【小問1詳解】證明:在正三棱柱中,平面,平面,則,又是以為直角頂點的等腰直角三角形,則,且,平面,故平面,而平面,所以,又為正三角形,所以為的中點;【小問2詳解】在正中,取的中點為,則,又平面,則,且,平面,故平面,取的中點為,且的中點為,則,故平面,而平面,所以,在等腰直角中,取的中點為,則,,平面,所以平面,而平面,所以,故為二面角平面角,又,則,,所以在中,,即:,故二面角的大小為.:19、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于中檔題.20、(1),焦點坐標(biāo)(2)【解析】(1)將點的坐標(biāo)代入拋物線的方程,可求得的值,進(jìn)而可得拋物線的焦點坐標(biāo);(2)寫出直線的方程,聯(lián)立直線與拋物線方程求得交點坐標(biāo),利用兩點之間的距離公式即可求解.【小問1詳解】因為點在拋物線上,所以,即所以拋物線的方程為,焦點坐標(biāo)為;【小問2詳解】由已知得直線方程為,即由得,解得或所以,則21、(1);(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式;(2)求得,利用裂項相消法求出,即可證得結(jié)論成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問2詳解】證明:,因此,,故原不等式得證.22、(1)證明見解析(2)【解析】(1)連接交于點O,連接OD,通過三角形中位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浸泡型果酒釀造工安全風(fēng)險競賽考核試卷含答案
- 個人信息保護(hù)合規(guī)管理員操作評估測試考核試卷含答案
- 光纖檢測員崗前績效目標(biāo)考核試卷含答案
- 打擊樂器制作工安全生產(chǎn)規(guī)范考核試卷含答案
- 鑄造碳化鎢熔煉破碎工操作管理水平考核試卷含答案
- 軋管工安全實踐水平考核試卷含答案
- 燃?xì)饩吡悴考谱鞴ぷ兏锕芾碓u優(yōu)考核試卷含答案
- 光刻工安全生產(chǎn)規(guī)范評優(yōu)考核試卷含答案
- 用電檢查員創(chuàng)新意識強(qiáng)化考核試卷含答案
- 皮鞋制作工崗前規(guī)章制度考核試卷含答案
- 2025人民法院出版社社會招聘8人(公共基礎(chǔ)知識)測試題附答案解析
- 上海市奉賢區(qū)2026屆高三一模英語試題
- 設(shè)施設(shè)備綜合安全管理制度以及安全設(shè)施、設(shè)備維護(hù)、保養(yǎng)和檢修、維修制
- 2025年瑜伽行業(yè)市場發(fā)展可行性研究報告及總結(jié)分析
- 2025屆高考全國二卷第5題說題課件
- 2025云南昆明國際會展中心有限公司社會招聘8人備考題庫及答案詳解(歷年真題)
- DB5206∕T 128-2020 梵凈抹茶 加工技術(shù)規(guī)程
- 2025年國企考試綜合基礎(chǔ)知識題庫及答案解析
- QSY08002.3-2021健康安全與環(huán)境管理體系第3部分審核指南
- 25新二上語文1-8單元必背知識點
- 四川省德陽市旌陽區(qū)2024-2025學(xué)年七年級上學(xué)期語文期末檢測試卷(含答案)
評論
0/150
提交評論