版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣東省汕頭市潮陽啟聲高中高一數(shù)學第一學期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知,若不等式恒成立,則的最大值為()A.13 B.14C.15 D.163.某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的表面積為A. B.C. D.4.當時,函數(shù)(,),取得最小值,則關(guān)于函數(shù),下列說法錯誤的是()A.是奇函數(shù)且圖象關(guān)于點對稱B.偶函數(shù)且圖象關(guān)于點(π,0)對稱C.是奇函數(shù)且圖象關(guān)于直線對稱D.是偶函數(shù)且圖象關(guān)于直線對稱5.函數(shù)(,且)的圖象必過定點A. B.C. D.6.已知平行四邊形的對角線相交于點點在的內(nèi)部(不含邊界).若則實數(shù)對可以是A. B.C. D.7.函數(shù)圖象一定過點A.(0,1) B.(1,0)C.(0,3) D.(3,0)8.若關(guān)于的方程有且僅有一個實根,則實數(shù)的值為()A3或-1 B.3C.3或-2 D.-19.集合,,則()A. B.C. D.10.已知函數(shù)關(guān)于x的方程有4個根,,,,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知過點的直線與軸,軸在第二象限圍成的三角形的面積為3,則直線的方程為__________12.函數(shù)是定義在R上的奇函數(shù),當時,2,則在R上的解析式為________.13.已知曲線且過定點,若且,則的最小值為_____14.已知一個扇形的面積為,半徑為,則它的圓心角為______弧度15.已知函數(shù),,若不等式恰有兩個整數(shù)解,則實數(shù)的取值范圍是________16.已知函數(shù)(且)的圖象過定點,則點的坐標為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.求函數(shù)的定義域、值域與單調(diào)區(qū)間;18.函數(shù)的定義域.19.已知函數(shù)的部分圖象如圖所示(1)求的解析式.(2)寫出的遞增區(qū)間.20.大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速(單位:)與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?21.如圖,在四棱錐中,平面,,為棱上一點.(1)設(shè)為與的交點,若,求證:平面;(2)若,求證:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】函數(shù)有三個零點,轉(zhuǎn)化為函數(shù)的圖象與直線有三個不同的交點,畫出的圖象,結(jié)合圖象求解即可【詳解】因為函數(shù)有三個零點,所以函數(shù)的圖象與直線有三個不同的交點,函數(shù)的圖象如圖所示,由圖可知,,故選:A2、D【解析】用分離參數(shù)法轉(zhuǎn)化為恒成立,只需,再利用基本不等式求出的最小值即可.【詳解】因為,所以,所以恒成立,只需因為,所以,當且僅當時,即時取等號.所以.即的最大值為16.故選:D3、D【解析】由三視圖知幾何體為圓柱挖去一個圓錐所得的組合體,且圓錐與圓柱的底面直徑都為4,高為2,則圓錐的母線長為,∴該幾何體的表面積S=π×22+2π×2×2+π×2×2=(12+4)π,故選D.4、C【解析】根據(jù)正弦型函數(shù)的性質(zhì)逐一判斷即可.【詳解】因為當時,函數(shù)取得最小值,所以,因為,所以令,即,所以,設(shè),因為,所以函數(shù)是奇函數(shù),因此選項B、D不正確;因為,,所以,因此函數(shù)關(guān)于直線對稱,因此選項A不正確,故選:C5、C【解析】因為函數(shù),且有(且),令,則,,所以函數(shù)的圖象經(jīng)過點.故選:C.【點睛】本題主要考查對數(shù)函數(shù)(且)恒過定點,屬于基礎(chǔ)題目.6、B【解析】分析:根據(jù)x,y值確定P點位置,逐一驗證.詳解:因為,所以P在線段BD上,不合題意,舍去;因為,所以P在線段OD外側(cè),符合題意,因為,所以P在線段OB內(nèi)側(cè),不合題意,舍去;因為,所以P在線段OD內(nèi)側(cè),不合題意,舍去;選B.點睛:若,則三點共線,利用這個充要關(guān)系可確定點的位置.7、C【解析】根據(jù)過定點,可得函數(shù)過定點.【詳解】因為在函數(shù)中,當時,恒有,函數(shù)的圖象一定經(jīng)過點,故選C.【點睛】本題主要考查指數(shù)函數(shù)的幾何性質(zhì),屬于簡單題.函數(shù)圖象過定點問題主要有兩種類型:(1)指數(shù)型,主要借助過定點解答;(2)對數(shù)型:主要借助過定點解答.8、B【解析】令,根據(jù)定義,可得的奇偶性,根據(jù)題意,可得,可求得值,分析討論,即可得答案.【詳解】令,則,所以為偶函數(shù),圖象關(guān)于y軸對稱,因為原方程僅有一個實根,所以有且僅有一個根,即,所以,解得或-1,當時,,,,不滿足僅有一個實數(shù)根,故舍去,當時,,當時,由復合函數(shù)的單調(diào)性知是增函數(shù),所以,當時,,所以,所以僅有,滿足題意,綜上:.故選:B9、B【解析】解不等式可求得集合,由交集定義可得結(jié)果.【詳解】,,.故選:B.10、B【解析】依題意畫出函數(shù)圖象,結(jié)合圖象可知且,,即可得到,則,再令,根據(jù)二次函數(shù)的性質(zhì)求出的取值范圍,最后根據(jù)對勾函數(shù)的性質(zhì)計算可得;【詳解】解:因,所以函數(shù)圖象如下所示:由圖象可知,其中,其中,,,則,得..令,,又在上單調(diào)減,,即.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)直線l的方程是y=k(x-3)+4,它在x軸、y軸上的截距分別是﹣+3,-3k+4,且﹣+3<0,-3k+4>0由已知,得(-3k+4)(﹣3)=6,解得k1=或k2=所以直線l的方程為:故答案為12、【解析】由是定義域在上的奇函數(shù),根據(jù)奇函數(shù)的性質(zhì),可推得的解析式.【詳解】當時,2,即,設(shè),則,,又為奇函數(shù),,所以在R上的解析式為.故答案為:.13、【解析】由指數(shù)函數(shù)圖象所過定點求出,利用“1”的代換湊配出定值后用基本不等式得出最小值.【詳解】令,,則,∴定點為,,,當且僅當時等號成立,即時取得最小值.故答案為:.【點睛】本題考查指數(shù)函數(shù)的圖象與性質(zhì),考查用基本不等式求最值.“1”的代換是解題關(guān)鍵.14、##【解析】利用扇形的面積公式列方程即可求解.【詳解】設(shè)扇形的圓心角為,扇形的面積即,解得,所以扇形的圓心角為弧度,故答案為:.15、.【解析】因為,所以即的取值范圍是.點睛:對于方程解的個數(shù)(或函數(shù)零點個數(shù))問題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖確定其中參數(shù)范圍.從圖象的最高點、最低點,分析函數(shù)的最值、極值;從圖象的對稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性等16、【解析】令,結(jié)合對數(shù)的運算即可得出結(jié)果.【詳解】令,得,又因此,定點的坐標為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、定義域為,值域為,遞減區(qū)間為,遞增區(qū)間為.【解析】由函數(shù)的解析式有意義列出不等式,可求得其定義域,由,結(jié)合基本不等式,可求得函數(shù)的值域,令,根據(jù)對勾函數(shù)的性質(zhì)和復合函數(shù)的單調(diào)性的判定方法,可求得函數(shù)的單調(diào)區(qū)間.【詳解】由題意,函數(shù)有意義,則滿足且,因為方程,所以,解得,所以函數(shù)的定義域為又由,因為,所以,當且僅當時,即時,等號成立,所以,所以函數(shù)的值域為,令,根據(jù)對勾函數(shù)的性質(zhì),可得函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,結(jié)合復合函數(shù)的單調(diào)性的判定方法,可得在上單調(diào)遞減,在上單調(diào)遞增.18、【解析】函數(shù)的定義域是,由對數(shù)函數(shù)的性質(zhì)能夠求出結(jié)果【詳解】整理得解得函數(shù)的定義域為【點睛】本題考查對數(shù)函數(shù)的定義域,是基礎(chǔ)題.解題時要認真審題,注意對數(shù)性質(zhì)的合理運用19、(1)(2),【解析】(1)由函數(shù)的圖像可得,得出周期,從而得出,再根據(jù)五點作圖法求出,得出答案.(2)令解出的范圍,得出答案.【小問1詳解】由圖可知,,∴,∴,將點代入得,,,∴,,∵,∴,∴【小問2詳解】由,,解得,,∴的遞增區(qū)間為,20、(1),;(2)24300【解析】:(1)由,可得,.(2)由題,解得:,故其耗氧量至多需要24300個單位.試題解析:(1)由題意,得,解得:,.∴游速與其耗氧量單位數(shù)之間的函數(shù)解析式為.(2)由題意,有,即,∴由對數(shù)函數(shù)的單調(diào)性,有,解得:,∴當一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)項目建議書v60某著名企業(yè)0204
- 《GBT 18511-2017 煤的著火溫度測定方法》專題研究報告
- 《GBT 5121.3-2008銅及銅合金化學分析方法 第3部分:鉛含量的測定》專題研究報告深度
- 道路作業(yè)交通安全培訓課件
- 2026年九年級物理上冊期末綜合考核試題及答案
- 2025-2026年蘇課新版八年級英語上冊期末解析含答案
- 2026年福建省公務(wù)員考試《行測》試題及答案
- 迪士尼介紹教學課件
- 達旗市交通安全培訓課件
- 達爾文的微課件
- 2025年軍事理論知識競賽題庫及答案
- 2025年4月自考00612日本文學選讀試題
- 2025至2030PA12T型行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 精神科暗示治療技術(shù)解析
- 2025年人工智能訓練師(三級)職業(yè)技能鑒定理論考試題庫(含答案)
- 智慧產(chǎn)業(yè)園倉儲項目可行性研究報告-商業(yè)計劃書
- 財務(wù)部門的年度目標與計劃
- 消防管道拆除合同協(xié)議
- 四川省森林資源規(guī)劃設(shè)計調(diào)查技術(shù)細則
- 銀行外包服務(wù)管理應(yīng)急預案
- DB13T 5885-2024地表基質(zhì)調(diào)查規(guī)范(1∶50 000)
評論
0/150
提交評論