數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題_第1頁
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題_第2頁
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題_第3頁
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題_第4頁
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸資料專題真題一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說明理由2.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)3.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說明理由.4.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長(zhǎng),現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長(zhǎng).(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.5.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).6.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關(guān)系是_______;(2)如圖2,若點(diǎn)G是射線MA上任意一點(diǎn),且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論:(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M和點(diǎn)N,時(shí),作∠PMB的角平分線MQ與射線FM相交于點(diǎn)Q,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.7.[原題](1)已知直線,點(diǎn)P為平行線AB,CD之間的一點(diǎn),如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當(dāng)點(diǎn)P在直線AB的上方時(shí).若,和的平分線相交于點(diǎn),與的平分線相交于點(diǎn),與的平分線相交于點(diǎn)……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長(zhǎng)線和的補(bǔ)角的平分線相交于點(diǎn)E,試猜想與的數(shù)量關(guān)系,并說明理由.8.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點(diǎn)E.(1)如圖1,過點(diǎn)A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數(shù)為;(2)如圖2,過點(diǎn)A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數(shù);(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長(zhǎng)線于點(diǎn)F,作FD⊥BC于D,設(shè)∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數(shù)式表示)(4)如圖4,在圖3的基礎(chǔ)上分別作∠BAE和∠BCF的角平分線,交于點(diǎn)F1,作F1D1⊥BC于D1,設(shè)∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數(shù)式表示)9.已知:直線,點(diǎn)E,F(xiàn)分別在直線AB,CD上,點(diǎn)M為兩平行線內(nèi)部一點(diǎn).(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為________;(直接寫出答案)(2)如圖2,∠MEB和∠MFD的角平分線交于點(diǎn)N,若∠EMF等于130°,求∠ENF的度數(shù);(3)如圖3,點(diǎn)G為直線CD上一點(diǎn),延長(zhǎng)GM交直線AB于點(diǎn)Q,點(diǎn)P為MG上一點(diǎn),射線PF、EH相交于點(diǎn)H,滿足,,設(shè)∠EMF=α,求∠H的度數(shù)(用含α的代數(shù)式表示).10.已知E、D分別在的邊、上,C為平面內(nèi)一點(diǎn),、分別是、的平分線.(1)如圖1,若點(diǎn)C在上,且,求證:;(2)如圖2,若點(diǎn)C在的內(nèi)部,且,請(qǐng)猜想、、之間的數(shù)量關(guān)系,并證明;(3)若點(diǎn)C在的外部,且,請(qǐng)根據(jù)圖3、圖4直接寫出結(jié)果出、、之間的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點(diǎn)作平行線是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.3.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯(cuò)角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵M(jìn)F,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識(shí),最后一個(gè)問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.4.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長(zhǎng)為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長(zhǎng)BC交MN于K,延長(zhǎng)DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.5.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點(diǎn)H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用三角形外角性質(zhì)進(jìn)行計(jì)算求解.解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.6.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問題;(2)結(jié)論,只要證明即可解決問題;(3)結(jié)論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設(shè)∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點(diǎn)睛】本題考查幾何變換綜合題、平行線的判定和性質(zhì)、角平分線的定義、非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問題,屬于中考?jí)狠S題.7.(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作解析:(1);(2);(3),理由見解析【分析】(1)過作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過作,進(jìn)而得出,再根據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),即可得到【詳解】解:(1)如圖1,過作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線交于點(diǎn),,,,,,與的角平分線交于點(diǎn),,,,,,同理可得,,以此類推,的度數(shù)為.(3).理由如下:如圖3,過作,而,,,,,又的角平分線的反向延長(zhǎng)線和的補(bǔ)角的角平分線交于點(diǎn),,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì)以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.8.(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.解析:(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形內(nèi)角和定理構(gòu)建方程求出x即可解決問題.(3)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再結(jié)合三角形內(nèi)角和定理解決問題即可.(4)設(shè)∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再結(jié)合三角形內(nèi)角和定理解決問題即可.【詳解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形內(nèi)角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)設(shè)∠FAC=∠FAB=x.則有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=(180°-n),∵∠AFC=∠FCG-∠FAC=(180°-n)-x=90°-n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-n,∴∠DFE-∠AFC=n-30°.(4)設(shè)∠FAC=∠FAB=y.由題意同法可得:∠D1F1A=90°-(180°-n-y)=n+y-90°,∠AF1C=180°-y-n-(180°-n)=135°-y-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-y-n)=n+3y-225°,∵2y+30°+n=180°,∴y=75°-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-x-n)=n+225°-n-225°=n.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線的定義,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,本題有一定的難度.9.(1);(2);(3).【分析】(1)過點(diǎn)作,利用平行線的性質(zhì)可得,,由,經(jīng)過等量代換可得結(jié)論;(2)過作,利用平行線的性質(zhì)以及角平分線的定義計(jì)算即可.(3)如圖②中設(shè),,則,,設(shè)交于.證明解析:(1);(2);(3).【分析】(1)過點(diǎn)作,利用平行線的性質(zhì)可得,,由,經(jīng)過等量代換可得結(jié)論;(2)過作,利用平行線的性質(zhì)以及角平分線的定義計(jì)算即可.(3)如圖②中設(shè),,則,,設(shè)交于.證明,求出即可解決問題.【詳解】(1)如圖1,過點(diǎn)作,,,,,,;(2)過作,,,,,,,分別平分和,,,,;(3)如圖②中設(shè),,則,,設(shè)交于.,,,,,,,,,,,,,.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,三角形的外角的性質(zhì),三角形的內(nèi)角和定理等知識(shí),作出平行線,利用參數(shù)解決問題是解題的關(guān)鍵.10.(1)證明見解析;(2)∠CDB+∠AEC=2∠DCE;(3)圖3中∠CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論