版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省宜春市上高縣第二中學(xué)2026屆數(shù)學(xué)高一上期末達(dá)標(biāo)測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則A. B.0C.1 D.2.已知,則的大小關(guān)系為()A. B.C. D.3.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.4.已知,,則的值約為(精確到)()A. B.C. D.5.已知向量,,且與的夾角為銳角,則的取值范圍是A. B.C. D.6.已知圓:與圓:,則兩圓的公切線條數(shù)為A.1條 B.2條C.3條 D.4條7.將函數(shù)的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是A. B.C. D.8.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7 B.6C.5 D.39.圓過點的切線方程是()A. B.C. D.10.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),實數(shù),滿足,且,若在上的最大值為2,則____12.定義在上的偶函數(shù)滿足,且在上是減函數(shù),若、是鈍角三角形的兩個銳角,對(1),為奇數(shù);(2);(3);(4);(5).則以上結(jié)論中正確的有______________.(填入所有正確結(jié)論的序號).13.中國南宋大數(shù)學(xué)家秦九韶提出了“三斜求積術(shù)”,即已知三角形的三條邊長分別為、、,則三角形的面積可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫—秦九韶公式,現(xiàn)有一個三角形的邊長滿足,,則此三角形面積的最大值為______14.______________.15.衣柜里的樟腦丸,隨著時間會揮發(fā)而體積縮小,剛放進(jìn)的新丸體積為a,經(jīng)過t天后體積V與天數(shù)t的關(guān)系式為:.已知新丸經(jīng)過50天后,體積變?yōu)椋粢粋€新丸體積變?yōu)?,則需經(jīng)過的天數(shù)為______16.不等式對任意實數(shù)都成立,則實數(shù)的取值范圍是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)當(dāng)時,利用單調(diào)性定義證明在上是增函數(shù);(2)若存在,使,求實數(shù)的取值范圍.18.已知,(1)求的值;(2)求的值.19.已知兩點,,兩直線:,:求:(1)過點且與直線平行的直線方程;(2)過線段的中點以及直線與的交點的直線方程20.已知函數(shù)(Ⅰ)求在區(qū)間上的單調(diào)遞增區(qū)間;(Ⅱ)若,,求值21.設(shè)向量的夾角為且如果(1)證明:三點共線.(2)試確定實數(shù)的值,使的取值滿足向量與向量垂直.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】詳解】故選2、B【解析】先對三個數(shù)化簡,然后利用指數(shù)函數(shù)的單調(diào)性判斷即可【詳解】,,,因為在上為增函數(shù),且,所以,所以,故選:B3、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進(jìn)而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.4、B【解析】利用對數(shù)的運(yùn)算性質(zhì)將化為和的形式,代入和的值即可得解.【詳解】.故選:B5、B【解析】因為與夾角為銳角,所以cos<,>>0,且與不共線,由得,k>-2且,故選B考點:本題主要考查平面向量的坐標(biāo)運(yùn)算,向量夾角公式點評:基礎(chǔ)題,由夾角為銳角,可得到k得到不等式,應(yīng)注意夾角為0°時,夾角的余弦值也大于0.6、D【解析】求出兩圓的圓心與半徑,利用圓心距判斷兩圓外離,公切線有4條【詳解】圓C1:x2+y2﹣2x=0化為標(biāo)準(zhǔn)形式是(x﹣1)2+y2=1,圓心是C1(1,0),半徑是r1=1;圓C2:x2+y2﹣4y+3=0化為標(biāo)準(zhǔn)形式是x2+(y﹣2)2=1,圓心是C2(0,2),半徑是r2=1;則|C1C2|r1+r2,∴兩圓外離,公切線有4條故選D【點睛】本題考查了兩圓的一般方程與位置關(guān)系應(yīng)用問題,是基礎(chǔ)題7、C【解析】將函數(shù)的圖象上所有的點向右平行移動個單位長度,所得函數(shù)圖象的解析式為y=sin(x-);再把所得圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是.故選C.8、A【解析】設(shè)圓臺上底面半徑為,由圓臺側(cè)面積公式列出方程,求解即可得解.【詳解】設(shè)圓臺上底面半徑為,由題意下底面半徑為,母線長,所以,解得.故選:A.【點睛】本題考查了圓臺側(cè)面積公式的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】先求圓心與切點連線的斜率,再利用切線與連線垂直求得切線的斜率結(jié)合點斜式即可求方程.【詳解】由題意知,圓:,圓心在圓上,,所以切線的斜率為,所以在點處的切線方程為,即.故選:D.10、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應(yīng)用,意在考查學(xué)生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】由題意結(jié)合函數(shù)的解析式分別求得a,b的值,然后求解的值即可.【詳解】繪制函數(shù)的圖像如圖所示,由題意結(jié)合函數(shù)圖像可知可知,則,據(jù)此可知函數(shù)在區(qū)間上的最大值為,解得,且,解得:,故.【點睛】本題主要考查函數(shù)圖像的應(yīng)用,對數(shù)的運(yùn)算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.12、(1)(4)(5)【解析】令,結(jié)合偶函數(shù)得到,根據(jù)題意推出函數(shù)的周期為,可得(1)正確;根據(jù)函數(shù)在上是減函數(shù),結(jié)合周期性可得在上是增函數(shù),利用、是鈍角三角形的兩個銳角,結(jié)合正弦函數(shù)、余弦函數(shù)的單調(diào)性可得,,再利用函數(shù)的單調(diào)性可得(4)(5)正確,當(dāng)時,可得(2)(3)不正確.【詳解】∵,令,得,又是偶函數(shù),則,∴,且,可得函數(shù)是周期為2的函數(shù).故,為奇數(shù).故(1)正確;∵、是鈍角三角形的兩個銳角,∴,可得,∵在區(qū)間上是增函數(shù),,∴,即鈍角三角形的兩個銳角、滿足,由在區(qū)間上是減函數(shù)得,∵函數(shù)是周期為2的函數(shù)且在上是減函數(shù),∴在上也是減函數(shù),又函數(shù)是定義在上的偶函數(shù),可得在上是增函數(shù).∵鈍角三角形的兩個銳角、滿足,,且,,∴,.故(4)(5)正確;當(dāng)時,,,,,故(2)(3)不正確.故答案為:(1)(4)(5)【點睛】關(guān)鍵點點睛:利用函數(shù)的奇偶性和單調(diào)性求解是解題關(guān)鍵.13、【解析】計算得出,利用海倫—秦九韶公式可得出,利用基本不等式可求得的最大值.【詳解】,所以,.當(dāng)且僅當(dāng)時,等號成立,且此時三邊可以構(gòu)成三角形.因此,該三角形面積的最大值為.故答案為:.14、2【解析】由對數(shù)的運(yùn)算法則直接求解.【詳解】故答案為:215、75【解析】由題意,先算出,由此可算出一個新丸體積變?yōu)樾杞?jīng)過的天數(shù).【詳解】由已知,得,∴設(shè)經(jīng)過天后,一個新丸體積變?yōu)椋瑒t,∴,∴,故答案為:75.16、【解析】利用二次不等式與相應(yīng)的二次函數(shù)的關(guān)系,易得結(jié)果.詳解】∵不等式對任意實數(shù)都成立,∴∴<k<2故答案為【點睛】(1)二次函數(shù)圖象與x軸交點的橫坐標(biāo)、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)利用函數(shù)單調(diào)性的定義證明即可.(2)分類討論,當(dāng)時,恒大于等于,不成立,當(dāng)時,分別求出時和時的值域,將題意等價于,從而得到答案.【詳解】(1),任取,且,因為,所以,,,又因為所以,即.所以時,在上是增函數(shù).(2)①當(dāng)時,即,恒大于等于,,故不成立.②當(dāng)時,即,在上是增函數(shù),若時,,所以的值域為,若時,值域為,則值域.若存,使,等價于,所以,解得.綜上所述,實數(shù)的取值范圍是.18、(1)(2)【解析】(1)化簡得到原式,代入數(shù)據(jù)得到答案.(2)變換得到,代入數(shù)據(jù)得到答案.【詳解】(1).(2).【點睛】本題考查了利用齊次式計算函數(shù)值,變換是解題的關(guān)鍵.19、(1)(2)【解析】【試題分析】(1)設(shè)所求直線方程為:,將點坐標(biāo)代入,求得的值,即得所求.(2)求得中點坐標(biāo)和直線交點的坐標(biāo),利用點斜式得到所求直線方程.【試題解析】(1)設(shè)與:平行的直線方程為:,將代入,得,解得,故所求直線方程是:(2)∵,,∴線段的中點是,設(shè)兩直線的交點為,聯(lián)立解得交點,則,故所求直線的方程為:,即20、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等變換思想化簡函數(shù)的解析式為,求得函數(shù)在上的單調(diào)遞增區(qū)間,與取交集可得出結(jié)果;(Ⅱ)由可得出,利用同角三角函數(shù)的基本關(guān)系可求得的值,利用兩角和的正弦公式可求得的值【詳解】(Ⅰ)令,,得,令,得;令,得.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物材料編程調(diào)控軟骨細(xì)胞表型的策略
- 生物化學(xué)虛擬實驗與產(chǎn)業(yè)需求對接
- 生物制劑對IBD癌變風(fēng)險的影響與機(jī)制
- 深度解析(2026)《GBT 20183.4-2025植物保護(hù)機(jī)械 噴霧設(shè)備 第4部分:藥液箱攪拌試驗方法 》
- 深度解析(2026)《GBT 19525.2-2004畜禽場環(huán)境質(zhì)量評價準(zhǔn)則》
- 生殖健康臨床試驗的遠(yuǎn)程生殖指標(biāo)監(jiān)查要點
- 電商運(yùn)營崗位登記審核注意事項及常見問題解答
- 飛機(jī)場廊橋維護(hù)人員招聘面試題庫含答案
- 內(nèi)容運(yùn)營崗位職責(zé)及面試題解讀
- 深度解析(2026)《GBT 19259-2003視頻投影器通 用技術(shù)條件》
- DB32∕T 5085-2025 無機(jī)涂料應(yīng)用技術(shù)規(guī)程
- 食品檢驗員崗位面試問題及答案
- DB37∕T 5234-2022 超高程泵送混凝土應(yīng)用技術(shù)規(guī)程
- 設(shè)備管理二級管理制度
- 十五五學(xué)校五年發(fā)展規(guī)劃(2026-2030)
- 養(yǎng)老機(jī)構(gòu)5項精細(xì)化護(hù)理照料內(nèi)容+18張護(hù)理服務(wù)操作流程圖
- T/CCS 032-2023礦井智能化通風(fēng)系統(tǒng)建設(shè)技術(shù)規(guī)范
- 2025年四川中鐵建昆侖投資集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2025-2030中國推拉高爾夫車行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析研究報告
- 醫(yī)院辦公室主任述職報告
- 駕駛員心理健康培訓(xùn)課件
評論
0/150
提交評論