河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題含解析_第1頁
河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題含解析_第2頁
河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題含解析_第3頁
河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題含解析_第4頁
河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省洛陽市名校2025年數(shù)學(xué)高二第一學(xué)期期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.42.設(shè)滿足則的最大值為A. B.2C.4 D.163.拋物線有如下光學(xué)性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.4.一物體做直線運(yùn)動,其位移(單位:)與時間(單位:)的關(guān)系是,則該物體在時的瞬時速度是A. B.C. D.5.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項和B.由滿足對都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對一切,6.已知數(shù)列中,,,是的前n項和,則()A. B.C. D.7.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.28.已知為橢圓的兩個焦點(diǎn),過的直線交橢圓于兩點(diǎn),若,則()A. B.C. D.9.某高校甲、乙兩位同學(xué)大學(xué)四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個等級)的條形圖如圖所示,則甲成績等級的中位數(shù)與乙成績等級的眾數(shù)分別是()A.3,5 B.3,3C.3.5,5 D.3.5,410.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定11.如果,那么下列不等式成立的是()A. B.C. D.12.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系O-xyz中,平面OAB的一個法向量為=(2,-2,1),已知點(diǎn)P(-1,3,2),則點(diǎn)P到平面OAB的距離d等于__________________14.?dāng)?shù)列的前項和為,則_________________.15.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)P到該拋物線焦點(diǎn)的距離為5,則點(diǎn)P的縱坐標(biāo)為_______16.如圖,在長方體ABCD—A1B1C1D1,AB=BC=2,CC1=1,則直線AD1與B1D所成角的余弦值為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,若焦距為4,點(diǎn)P是橢圓上與左、右頂點(diǎn)不重合的點(diǎn),且的面積最大值.(1)求橢圓的方程;(2)過點(diǎn)的直線交橢圓于點(diǎn)、,且滿足(為坐標(biāo)原點(diǎn)),求直線的方程.18.(12分)如圖所示,已知定點(diǎn)為曲線上一個動點(diǎn),求線段中點(diǎn)的軌跡方程.19.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?20.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點(diǎn),.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知直線過坐標(biāo)原點(diǎn),圓的方程為(1)當(dāng)直線的斜率為時,求與圓相交所得的弦長;(2)設(shè)直線與圓交于兩點(diǎn),,且為的中點(diǎn),求直線的方程22.(10分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(diǎn)(1)求證:平面;(2)求平面與平面CEB夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因?yàn)殡p曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.2、C【解析】可行域如圖,則直線過點(diǎn)A(0,1)取最大值2,則的最大值為4,選C.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點(diǎn)或邊界上取得.3、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項可得D正確,故選:D4、A【解析】先對求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時的瞬時速度【詳解】對求導(dǎo),得,,因此,該物體在時的瞬時速度為,故選A【點(diǎn)睛】本題考查瞬時速度的概念,考查導(dǎo)數(shù)與瞬時變化率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題5、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對于A,由,求出,,,…,推斷:數(shù)列的前項和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對于D,屬于歸納推理,但時,結(jié)論不正確,故D不正確.故選:A.6、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項相消求和法.7、B【解析】直接利用空間向量垂直的坐標(biāo)運(yùn)算即可解決.【詳解】∵∴∴,解得,故選:B.8、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C9、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數(shù),由圖可知乙的選修課等級的眾數(shù).【詳解】由條形圖可得,甲同學(xué)共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數(shù)為,乙成績等級的眾數(shù)為5.故選:C.10、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)?,所以,所以,所以的形狀為鈍角三角形.故選:C11、D【解析】利用不等式的性質(zhì)分析判斷每個選項.【詳解】由不等式的性質(zhì)可知,因?yàn)?,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D12、C【解析】先計算出直線恒過定點(diǎn),而點(diǎn)在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點(diǎn).把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】O是平面OAB上一個點(diǎn),設(shè)點(diǎn)P到平面OAB的距離為d,則d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即點(diǎn)P到平面OAB的距離為2考點(diǎn):空間向量在立體幾何中的運(yùn)用14、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當(dāng)時,;而不適合上式,.故答案:.15、4【解析】根據(jù)拋物線的定義,列出方程,即可得答案.【詳解】由題意:拋物線的準(zhǔn)線為,設(shè)點(diǎn)P的縱坐標(biāo)為,由拋物線定義可得,解得,所以點(diǎn)P的縱坐標(biāo)為4.故答案為:416、【解析】以為原點(diǎn),所在直線為軸的正方向建立空間直角坐標(biāo)系,求出,的坐標(biāo),由向量夾角公式可得答案.【詳解】以為原點(diǎn),所在直線為軸的正方向建立如圖的坐標(biāo)系,∵AB=BC=2,CC1=1,∴,,,,則,,則,,則cos<,>==,即AD1與B1D所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進(jìn)而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當(dāng)直線的斜率存在時,設(shè),代入③整理得,設(shè)、,則,所以,點(diǎn)到直線的距離因?yàn)?,即,又由,得,所以?而,,即,解得:,此時;②當(dāng)直線的斜率不存在時,,直線交橢圓于點(diǎn)、.也有,經(jīng)檢驗(yàn),上述直線均滿足,綜上:直線的方程為或.【點(diǎn)睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.18、【解析】設(shè)線段的中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,根據(jù)中點(diǎn)坐標(biāo)公式和代入法求得線段中點(diǎn)的軌跡方程.【詳解】解設(shè)線段的中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則用代入法求得所求方程為.【點(diǎn)睛】本題考查了中點(diǎn)坐標(biāo)公式和代入法求動點(diǎn)的軌跡方程,屬于容易題.19、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當(dāng)x=40時,則有可使得總造價最低,最低造價是268800元.考點(diǎn):不等式求解最值點(diǎn)評:主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題.20、(1)證明見解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點(diǎn),根據(jù)題意可知,兩兩垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,再分別求出向量和平面的一個法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因?yàn)?,所以,取中點(diǎn),連接,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),如圖所示,建立空間直角坐標(biāo)系,則,又為中點(diǎn),所以.由(1)得平面,所以平面的一個法向量從而直線與平面所成角的正弦值為【點(diǎn)睛】本題第一問主要考查線面垂直的相互轉(zhuǎn)化,要證明,可以考慮,題中與有垂直關(guān)系直線較多,易證平面,從而使問題得以解決;第二問思路直接,由第一問的垂直關(guān)系可以建立空間直角坐標(biāo)系,根據(jù)線面角的向量公式即可計算得出21、(1)(2)或【解析】(1)、由題意可知直線的方程為,圓的圓心為,半徑為,求出圓心到直線的距離,根據(jù)勾股定理即可求出與圓相交所得的弦長;(2)、設(shè),因?yàn)闉榈闹悬c(diǎn),所以,又因?yàn)?,均在圓上,將,坐標(biāo)代入圓方程,即可求出點(diǎn)坐標(biāo),即可求出直線的方程【小問1詳解】由題意:直線過坐標(biāo)原點(diǎn),且直線的斜率為直線的方程為,圓的方程為圓的方程可化為:圓的圓心為,半徑為圓的圓心到直線:的距離為,與圓相交所得的弦長為【小問2詳解】設(shè),為的中點(diǎn),又,均在圓上,或直線方程或22、(1)證明見解析;(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論