2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆重慶市普通高中高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知冪函數(shù)的圖像過點,若,則實數(shù)的值為A. B.C. D.2.已知是冪函數(shù),且在第一象限內(nèi)是單調(diào)遞減,則的值為()A.-3 B.2C.-3或2 D.33.,,則p是q的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知函數(shù)的值域是()A. B.C. D.5.計算sin(-1380°)的值為()A. B.C. D.6.正方形的邊長為,它是水平放置的一個平面圖形的直觀圖,則原圖形的周長是()A. B.C. D.7.下列說法中,錯誤的是()A.若,,則 B.若,則C.若,,則 D.若,,則8.已知函數(shù)是冪函數(shù),且其圖象與兩坐標軸都沒有交點,則實數(shù)A. B.2C.3 D.2或9.袋中裝有5個小球,顏色分別是紅色、黃色、白色、黑色和紫色.現(xiàn)從袋中隨機抽取3個小球,設每個小球被抽到的機會均相等,則抽到白球或黑球的概率為A. B.C. D.10.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.___________,__________12.設函數(shù),則__________,方程的解為__________13.函數(shù)的反函數(shù)為___________14.已知(其中且為常數(shù))有兩個零點,則實數(shù)的取值范圍是___________.15.密位廣泛用于航海和軍事,我國采用“密位制”是6000密位制,即將一個圓圈分成6000等份,每一個等份是一個密位,那么600密位等于___________rad.16.不等式對于任意的x,y∈R恒成立,則實數(shù)k的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.求下列關于的不等式的解集:(1);(2)18.設函數(shù).(1)當時,若對于,有恒成立,求取值范圍;(2)已知,若對于一切實數(shù)恒成立,并且存在,使得成立,求的最小值.19.已知函數(shù).(1)若,求的解集;(2)若為銳角,且,求的值.20.已知二次函數(shù).(1)若為偶函數(shù),求在上的值域:(2)若時,的圖象恒在直線的上方,求實數(shù)a的取值范圍.21.在三棱錐中,平面,,,,分別是,的中點,,分別是,的中點.(1)求證:平面.(2)求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】將點代入函數(shù)解析式,求出參數(shù)值,令函數(shù)值等于3,可求出自變量的值.詳解】依題意有2=4a,得a=,所以,當時,m=9.【點睛】本題考查函數(shù)解析式以及由函數(shù)值求自變量,一般由函數(shù)值求自變量的值時要注意自變量取值范圍以及題干的要求,避免多解.2、A【解析】根據(jù)冪函數(shù)的定義判斷即可【詳解】由是冪函數(shù),知,解得或.∵該函數(shù)在第一象限內(nèi)是單調(diào)遞減的,∴.故.故選:A.【點睛】本題考查了冪函數(shù)的定義以及函數(shù)的單調(diào)性問題,屬于基礎題3、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:因為,,所以由不能推出,由能推出,故是的必要不充分條件故選:B4、B【解析】由于,進而得,即函數(shù)的值域是【詳解】解:因為,所以所以函數(shù)的值域是故選:B5、D【解析】根據(jù)誘導公式以及特殊角三角函數(shù)值求結果.【詳解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故選:D【點睛】本題考查誘導公式以及特殊角三角函數(shù)值,考查基本求解能力,屬基礎題.6、B【解析】根據(jù)斜二測畫法畫直觀圖的性質(zhì),即平行于軸的線段長度不變,平行于軸的線段的長度減半,結合圖形求得原圖形的各邊長,可得周長【詳解】因為直觀圖正方形的邊長為1cm,所以,所以原圖形為平行四邊形OABC,其中,,,所以原圖形的周長7、A【解析】逐一檢驗,對A,取,判斷可知;對B,,可知;對C,利用作差即可判斷;對D根據(jù)不等式同向可加性可知結果.【詳解】對A,取,所以,故錯誤;對B,由,,所以,故正確;對C,,由,,所以,所以,故正確;對D,由,所以,又,所以故選:A8、A【解析】根據(jù)冪函數(shù)的定義,求出m的值,代入判斷即可【詳解】函數(shù)是冪函數(shù),,解得:或,時,,其圖象與兩坐標軸有交點不合題意,時,,其圖象與兩坐標軸都沒有交點,符合題意,故,故選A【點睛】本題考查了冪函數(shù)的定義,考查常見函數(shù)的性質(zhì),是一道常規(guī)題9、D【解析】分析:先求對立事件的概率:黑白都沒有的概率,再用1減得結果.詳解:從袋中球隨機摸個,有,黑白都沒有只有種,則抽到白或黑概率為選點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.10、A【解析】設C的坐標,由重心坐標公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標.【詳解】設C(m,n),由重心坐標公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當時,BC重合,舍去,所以頂點C的坐標是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標公式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①.##-0.5②.2【解析】根據(jù)誘導公式計算即可求出;根據(jù)對數(shù)運算性質(zhì)可得【詳解】由題意知,;故答案為:12、①.1②.4或-2【解析】(1)∵,∴(2)當時,由可得,解得;當時,由可得,解得或(舍去)故方程的解為或答案:1,或13、【解析】先求出函數(shù)的值域有,再得出,從而求得反函數(shù).【詳解】由,可得由,則,所以故答案為:.14、【解析】設,可轉(zhuǎn)化為有兩個正解,進而可得參數(shù)范圍.【詳解】設,由有兩個零點,即方程有兩個正解,所以,解得,即,故答案為:.15、【解析】根據(jù)周角為,結合新定義計算即可【詳解】解:∵圓周角為,∴1密位,∴600密位,故答案為:16、【解析】根據(jù)給定條件將命題轉(zhuǎn)化為關于x的一元二次不等式恒成立,再利用關于y的不等式恒成立即可計算作答.【詳解】因為對于任意的x,y∈R恒成立,于是得關于x的一元二次不等式對于任意的x,y∈R恒成立,因此,對于任意的y∈R恒成立,故有,解得,所以實數(shù)k的取值范圍為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)答案見解析.【解析】(1)將原不等式變形為,再利用分式不等式的解法可得原不等式的解集;(2)分、、三種情況討論,利用二次不等式的解法可得原不等式的解集.【小問1詳解】解:由得,解得或,故不等式的解集為或.【小問2詳解】解:當時,原不等式即為,該不等式的解集為;當時,,原不等式即為.①若,則,原不等式的解集為或;②若,則,原不等式的解集為或.綜上所述,當時,原不等式的解集為;當時,原不等式的解集為或;當時,原不等式解集為或.18、(1)(2)【解析】(1)據(jù)題意知,把不等式的恒成立轉(zhuǎn)化為恒成立,設,則,根據(jù)二次函數(shù)的性質(zhì),求得函數(shù)的最大致,即可求解.(2)由題意,根據(jù)二次函數(shù)的性質(zhì),求得,進而利用基本不等式,即可求解.【詳解】(1)據(jù)題意知,對于,有恒成立,即恒成立,因此,設,所以,函數(shù)在區(qū)間上是單調(diào)遞減的,,(2)由對于一切實數(shù)恒成立,可得,由存在,使得成立可得,,,當且僅當時等號成立,【點睛】本題主要考查了恒成立問題的求解,以及基本不等式求解最值問題,其中解答中掌握利用分離參數(shù)法是求解恒成立問題的重要方法,再合理利用二次函數(shù)的性質(zhì),合理利用基本不等式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.19、(1)(2)【解析】(1)利用三角恒等變換,將函數(shù)轉(zhuǎn)化為,由求解;(2)由得到,再由,利用二倍角公式求解.【小問1詳解】解:,,,由,得,即,又,故的解集為.【小問2詳解】由,得,因為為銳角,所以,則,故,,.20、(1);(2)【解析】(1)函數(shù)為二次函數(shù),其對稱軸為.由f(x)為偶函數(shù),可得a=2,再利用二次函數(shù)的單調(diào)性求出函數(shù)f(x)在[?1,2]上的值域;(2)根據(jù)題意可得f(x)>ax恒成立,轉(zhuǎn)化為恒成立,將參數(shù)分分離出來,再利用均值不等式判斷的范圍即可【小問1詳解】根據(jù)題意,函數(shù)為二次函數(shù),其對稱軸為.若為偶函數(shù),則,解得,則在上先減后增,當時,函數(shù)取得最小值9,當時,函數(shù)取得最大值13,即函數(shù)在上的值域為;【小問2詳解】由題意知時,恒成立,即.所以恒成立,因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論