版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
海南省臨高縣新盈中學(xué)2026屆數(shù)學(xué)高一第一學(xué)期期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果AB>0,BC>0,那么直線Ax-By-C=0不經(jīng)過的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.如圖是正方體或四面體,分別是所在棱的中點,則這四個點不共面的一個圖是()A. B.C. D.3.已知函數(shù),則下列區(qū)間中含有的零點的是()A. B.C. D.4.以下給出的是計算的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是A.B.C.D.5.已知函數(shù)關(guān)于x的方程有4個根,,,,則的取值范圍是()A. B.C. D.6.已知函數(shù),則函數(shù)的零點個數(shù)是A.1 B.2C.3 D.47.函數(shù)f(x)=+的定義域為()A. B.C. D.8.函數(shù)的圖像的一條對稱軸是()A. B.C. D.9.在平行四邊形中,設(shè),,,,下列式子中不正確的是()A. B.C. D.10.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),再將所得的圖象向右平移個單位,得到的圖象對應(yīng)的解析式是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則ab=_____________.12.函數(shù)的最大值為__________13.已知函數(shù)是定義在的奇函數(shù),則實數(shù)b的值為_________;若函數(shù),如果對于,,使得,則實數(shù)a的取值范圍是__________14.已知向量,,,,則與夾角的余弦值為______15.函數(shù)的最小值為_______16.已知命題:,都有是真命題,則實數(shù)取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.近年來,手機逐漸改變了人們生活方式,已經(jīng)成為了人們生活中的必需品,因此人們對手機性能的要求也越來越高.為了了解市場上某品牌的甲、乙兩種型號手機的性能,現(xiàn)從甲、乙兩種型號手機中各隨機抽取了6部手機進行性能測評,得到的評分數(shù)據(jù)如下(單位:分):甲型號手機908990889192乙型號手機889189938594假設(shè)所有手機性能評分相互獨立.(1)在甲型號手機樣本中,隨機抽取1部手機,求該手機性能評分不低于90分的概率;(2)在甲、乙兩種型號手機樣本中各抽取1部手機,求其中恰有1部手機性能評分不低于90分的概率;(3)試判斷甲型號手機樣本評分數(shù)據(jù)的方差與乙型號手機樣本評分數(shù)據(jù)的方差的大?。ㄖ恍鑼懗鼋Y(jié)論)18.2021年新冠肺炎疫情仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”、“拉姆達”、“奧密克戎”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護依然不能有絲毫放松.某科研機構(gòu)對某變異毒株在一特定環(huán)境下進行觀測,每隔單位時間進行一次記錄,用表示經(jīng)過單位時間的個數(shù),用表示此變異毒株的數(shù)量,單位為萬個,得到如下觀測數(shù)據(jù):123456(萬個)1050250若該變異毒株的數(shù)量(單位:萬個)與經(jīng)過個單位時間的關(guān)系有兩個函數(shù)模型與可供選擇.(1)判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求至少經(jīng)過多少個單位時間該病毒的數(shù)量不少于1億個.(參考數(shù)據(jù):)19.我們知道,函數(shù)的圖象關(guān)于坐標(biāo)原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).若函數(shù)的圖象關(guān)于點對稱,且當(dāng)時,.(1)求的值;(2)設(shè)函數(shù).(i)證明函數(shù)的圖象關(guān)于點對稱;(ii)若對任意,總存在,使得成立,求的取值范圍.20.某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為52,54,58為了預(yù)測以后各月的患病人數(shù),甲選擇的了模型,乙選擇了模型,其中y為患病人數(shù),x為月份數(shù),a,b,c,p,q,r都是常數(shù),結(jié)果4月,5月,6月份的患病人數(shù)分別為66,82,115,1你認為誰選擇的模型較好?需說明理由2至少要經(jīng)過多少個月患該傳染病的人數(shù)將會超過2000人?試用你選擇的較好模型解決上述問題21.已知(1)求的最小正周期;(2)將的圖像上的各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將所得圖像向右平移個單位,得到函數(shù)的圖像,求在上的單調(diào)區(qū)間和最值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】斜率為,截距,故不過第二象限.考點:直線方程.2、D【解析】A,B,C選項都有,所以四點共面,D選項四點不共面.故選:D.3、C【解析】分析函數(shù)的單調(diào)性,利用零點存在定理可得出結(jié)論.【詳解】由于函數(shù)為增函數(shù),函數(shù)在和上均為增函數(shù),所以,函數(shù)在和上均為增函數(shù).對于A選項,當(dāng)時,,,此時,,所以,函數(shù)在上無零點;對于BCD選項,當(dāng)時,,,由零點存在定理可知,函數(shù)的零點在區(qū)間內(nèi).故選:C.4、A【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值【詳解】程序運行過程中,各變量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此類推,第十圈:S=1+,k=11退出循環(huán)其中判斷框內(nèi)應(yīng)填入的條件是:k≤10,故選A【點睛】算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤5、B【解析】依題意畫出函數(shù)圖象,結(jié)合圖象可知且,,即可得到,則,再令,根據(jù)二次函數(shù)的性質(zhì)求出的取值范圍,最后根據(jù)對勾函數(shù)的性質(zhì)計算可得;【詳解】解:因,所以函數(shù)圖象如下所示:由圖象可知,其中,其中,,,則,得..令,,又在上單調(diào)減,,即.故選:B.6、A【解析】設(shè),則函數(shù)等價為,由,轉(zhuǎn)化為,利用數(shù)形結(jié)合或者分段函數(shù)進行求解,即可得到答案【詳解】由題意,如圖所示,設(shè),則函數(shù)等價為,由,得,若,則,即,不滿足條件若,則,則,滿足條件,當(dāng)時,令,解得(舍去);當(dāng)時,令,解得,即是函數(shù)的零點,所以函數(shù)的零點個數(shù)只有1個,故選A【點睛】本題主要考查了函數(shù)零點問題的應(yīng)用,其中解答中利用換元法結(jié)合分段函數(shù)的表達式以及數(shù)形結(jié)合是解決本題的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.7、C【解析】根據(jù)分母部位0,被開方數(shù)大于等于0構(gòu)造不等式組,即可解出結(jié)果【詳解】利用定義域的定義可得,解得,即,故選C【點睛】本題考查定義域的求解,需掌握:分式分母不為0,②偶次根式被開方數(shù)大于等于0,③對數(shù)的真數(shù)大于0.8、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.9、B【解析】根據(jù)向量加減法計算,再進行判斷選擇.【詳解】;;;故選:B【點睛】本題考查向量加減法,考查基本分析求解能力,屬基礎(chǔ)題.10、D【解析】橫坐標(biāo)伸長倍,則變?yōu)椋桓鶕?jù)左右平移的原則可得解析式.【詳解】橫坐標(biāo)伸長倍得:向右平移個單位得:本題正確選項:【點睛】本題考查三角函數(shù)圖象平移變換和伸縮變換,關(guān)鍵是能夠明確伸縮變換和平移變換都是針對于的變化.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】將化成對數(shù)形式,再根據(jù)對數(shù)換底公式可求ab的值.【詳解】,.故答案為:1.12、【解析】利用二倍角余弦公式,把問題轉(zhuǎn)化為關(guān)于的二次函數(shù)的最值問題.【詳解】,又,∴函數(shù)的最大值為.故答案為:.13、①.0②.【解析】由,可得,設(shè)在的值域為,在上的值域為,根據(jù)題意轉(zhuǎn)化為,根據(jù)函數(shù)的單調(diào)性求得函數(shù)和的值域,結(jié)合集合的運算,列出不等式組,即可求解.【詳解】由函數(shù)是定義在的奇函數(shù),可得,即,經(jīng)檢驗,b=0成立,設(shè)在值域為,在上的值域為,對于,,使得,等價于,又由為奇函數(shù),可得,當(dāng)時,,,所以在的值域為,因為在上單調(diào)遞增,在上單調(diào)遞減,可得的最小值為,最大值為,所以函數(shù)的值域為,則,解得,即實數(shù)的取值范圍為.故答案為:;.14、【解析】運用平面向量的夾角公式可解決此問題.【詳解】根據(jù)題意得,,,,故答案為.【點睛】本題考查平面向量夾角公式的簡單應(yīng)用.平面向量數(shù)量積公式有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).15、【解析】根據(jù)正弦型函數(shù)的性質(zhì)求的最小值.【詳解】由正弦型函數(shù)的性質(zhì)知:,∴的最小值為.故答案為:.16、【解析】由于,都有,所以,從而可求出實數(shù)的取值范圍【詳解】解:因為命題:,都有是真命題,所以,即,解得,所以實數(shù)的取值范圍為,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)1(3)甲型號手機樣本評分數(shù)據(jù)的方差小于乙型號手機樣本評分數(shù)據(jù)的方差.【解析】(1)由于甲型號手機樣本中,得共有4部手機性能評分不低于90分,進而得其概率;(2)由于甲型號的手機有4部評分不低于90分,乙型號的手機有3部評分不低于90分,進而列舉基本事件,根據(jù)古典概型求解即可;(3)根據(jù)表中數(shù)據(jù)的分散程度,估計比較即可.【小問1詳解】解:根據(jù)表中數(shù)據(jù),甲型號手機樣本中,得共有4部手機性能評分不低于90分,所以隨機抽取1部手機,求該手機性能評分不低于90分的概率為4【小問2詳解】解:甲型號的手機有4部評分不低于90分,記為a,b,c,d,另外兩部記為A,B乙型號的手機有3部評分不低于90分,記為x,y,z,另外三部記為1,2,3,所以甲、乙兩種型號手機樣本中各抽取1部手機,共有ax,ay,az,a1,a2,a3,bx,by,bz,b1,b2,b3,cx,cy,cz,c1,c2,c3,dx,dy,dz,d1,d2,d3,Ax,Ay,Az,A1,A2,A3,Bx,By,Bz,B1,B2,B3共36種,其中恰有1部手機性能評分不低于90分的基本事件有a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3,Ax,Ay,Az,Bx,By,Bz共18種,所以所求概率為P=18【小問3詳解】解:根據(jù)表中數(shù)據(jù),可判斷甲型號手機樣本評分數(shù)據(jù)的方差小于乙型號手機樣本評分數(shù)據(jù)的方差.18、(1)選擇函數(shù)更合適,解析式為(2)11個單位【解析】(1)將,和,分別代入兩種模型求解解析式,再根據(jù)時的值估計即可;(2)根據(jù)題意,進而結(jié)合對數(shù)運算求解即可.【小問1詳解】若選,將,和,代入得,解得得將代入,,不符合題意若選,將,和,代入得,解得得將代入得,符合題意綜上:所以選擇函數(shù)更合適,解析式為【小問2詳解】解:設(shè)至少需要個單位時間,則,即兩邊取對數(shù):因為,所以的最小值為11至少經(jīng)過11個單位時間不少于1億個19、(1);(2)(i)證明見解析;(ii).【解析】(1)根據(jù)題意∵為奇函數(shù),∴,令x=1即可求出;(2)(i)驗證為奇函數(shù)即可;(ii))求出在區(qū)間上的值域為A,記在區(qū)間上的值域為,則.由此問題轉(zhuǎn)化為討論f(x)的值域B,分,,三種情況討論即可.【小問1詳解】∵為奇函數(shù),∴,得,則令,得.【小問2詳解】(i),∵為奇函數(shù),∴為奇函數(shù),∴函數(shù)的圖象關(guān)于點對稱.(ii)在區(qū)間上單調(diào)遞增,∴在區(qū)間上的值域為,記在區(qū)間上的值域為,由對,總,使得成立知,①當(dāng)時,上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,∴在上單調(diào)遞增,只需即可,得,∴滿足題意;②當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,在上單調(diào)遞減,∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,∴或,當(dāng)時,,,∴滿足題意;③當(dāng)時,在上單調(diào)遞減,由對稱性知,在上單調(diào)遞減,∴在上單調(diào)遞減,只需即可,得,∴滿足題意.綜上所述,的取值范圍為.20、(1)應(yīng)將作為模擬函數(shù),理由見解析;(2)個月.【解析】根據(jù)前3個月的數(shù)據(jù)求出兩個函數(shù)模型的解析式,再計算4,5,6月的數(shù)據(jù),與真實值比較得出結(jié)論;由(1),列不等式求解,即可得出結(jié)論【詳解】由題意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真實值,應(yīng)將作為模擬函數(shù)令,解得,至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人【點睛】本題主要考查了函數(shù)的實際應(yīng)用問題,以及指數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職會計信息化實訓(xùn)(信息化實訓(xùn))試題及答案
- 2025年中職市政工程施工(道路施工技術(shù))試題及答案
- 2025年大學(xué)生物(細胞結(jié)構(gòu))試題及答案
- 2025年大學(xué)數(shù)字媒體技術(shù)(電商美工設(shè)計)試題及答案
- 2026年酒店前臺(VIP客戶接待)試題及答案
- 2025年高職林業(yè)技術(shù)(森林資源管理)試題及答案
- 2025年高職第二學(xué)年(市場營銷)營銷渠道拓展試題及答案
- 2026年智慧農(nóng)業(yè)大數(shù)據(jù)平臺項目可行性研究報告
- 2025年高職(現(xiàn)代農(nóng)業(yè)技術(shù))生態(tài)種植綜合測試題及答案
- 2026年餐飲管理(餐廳服務(wù)規(guī)范)試題及答案
- 村務(wù)監(jiān)督業(yè)務(wù)培訓(xùn)課件
- 食品包裝材料及容器
- 甲狀腺癌醫(yī)學(xué)知識講座
- 滅菌包裝袋內(nèi)部資料課件
- 工作匯報PPT(山與海之歌動態(tài))大氣震撼模板
- 義務(wù)消防員培訓(xùn)課件的課件
- 市政施工圍擋施工圍擋方案
- 城鎮(zhèn)道路工程施工與質(zhì)量驗收規(guī)范cjj
- YY0778-2018《射頻消融導(dǎo)管》標(biāo)準(zhǔn)變化解讀
- GB/T 8350-2003輸送鏈、附件和鏈輪
- GB/T 18318.1-2009紡織品彎曲性能的測定第1部分:斜面法
評論
0/150
提交評論