2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題含解析_第1頁
2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題含解析_第2頁
2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題含解析_第3頁
2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題含解析_第4頁
2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆云南省玉溪市第一中學數(shù)學高二上期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.262.氣象臺正南方向的一臺風中心,正向北偏東30°方向移動,移動速度為,距臺風中心以內的地區(qū)都將受到影響,若臺風中心的這種移動趨勢不變,氣象臺所在地受到臺風影響持續(xù)時間大約是()A. B.C. D.3.在中,內角所對的邊為,若,,,則()A. B.C. D.4.下列命題中,結論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數(shù)有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤5.當圓的圓心到直線的距離最大時,()A B.C. D.6.如圖,是對某位同學一學期次體育測試成績(單位:分)進行統(tǒng)計得到的散點圖,關于這位同學的成績分析,下列結論錯誤的是()A.該同學的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學次測試成績的眾數(shù)是分C.該同學次測試成績的中位數(shù)是分D.該同學次測試成績與測試次數(shù)具有相關性,且呈正相關7.設為直線上任意一點,過總能作圓的切線,則的最大值為()A. B.1C. D.8.已知等差數(shù)列,若,,則()A.1 B.C. D.39.已知橢圓:的左、右焦點分別為,,下頂點為,直線與橢圓的另一個交點為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.10.已知數(shù)列{}滿足,則()A. B.C. D.11.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.12.已知函數(shù)(是的導函數(shù)),則()A.21 B.20C.16 D.11二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標原點),則的面積是_________14.數(shù)列的前項和為,則_________________.15.展開式中的系數(shù)是___________.16.當為任意實數(shù)時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.18.(12分)已知拋物線過點.(1)求拋物線方程;(2)若直線與拋物線交于兩點兩點在軸的兩側,且,求證:過定點.19.(12分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權志愿者服務隊,求恰有一名女性的概率.20.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題21.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率22.(10分)已知函數(shù).(1)若在處取得極值,求在處的切線方程;(2)討論的單調性;(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】可設出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A2、D【解析】利用余弦定理進行求解即可.【詳解】如圖所示:設臺風中心為,,小時后到達點處,即,當時,氣象臺所在地受到臺風影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風影響持續(xù)時間大約是,故選:D3、B【解析】利用正弦定理角化邊得到,再利用余弦定理構造方程求得結果.【詳解】,,由余弦定理得:,,.故選:B.4、C【解析】求出兩直線垂直時m值判斷①;由復合命題真值表可判斷②;化簡不等式結合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C5、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.6、C【解析】根據(jù)給定的散點圖,逐一分析各個選項即可判斷作答.【詳解】對于A,由散點圖知,8次測試成績總體是依次增大,極差為,A正確;對于B,散點圖中8個數(shù)據(jù)的眾數(shù)是48,B正確;對于C,散點圖中的8個數(shù)由小到大排列,最中間兩個數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對于D,散點圖中8個點落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關性,且呈正相關,D正確.故選:C7、D【解析】根據(jù)題意,判斷點與圓的位置關系以及直線與圓的位置關系,根據(jù)直線與圓的位置關系,即可求得的最大值.【詳解】因為過過總能作圓的切線,故點在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.8、C【解析】利用等差數(shù)列的通項公式進行求解.【詳解】設等差數(shù)列的公差為,因為,,所以,解得.故選:C.9、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點坐標,再根據(jù)點在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點作軸,垂足為,則,由,,得,因為點在橢圓上,所以,所以,即離心率,故選:B.10、B【解析】先將通項公式化簡然后用裂項相消法求解即可.【詳解】因為,.故選:B11、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質可得當時,弦長最小,當過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D12、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的焦點在圓上可求出的值,設線段與軸的交點坐標為,進而根據(jù)求出的坐標,代入圓中,求出的值,即可求出結果.【詳解】因為雙曲線的焦點在圓上,所以,設線段與軸的交點坐標為,結合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.14、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當時,;而不適合上式,.故答案:.15、【解析】根據(jù)二項展開式的通項公式,可知展開式中含的項,以及展開式中含的項,再根據(jù)組合數(shù)的運算即可求出結果.【詳解】解:由題意可得,展開式中含的項為,而展開式中含的項為,所以的系數(shù)為.故答案為:.16、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得結果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內的有個,分別記為、、、,成績在內的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學成績在、內的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內的有個,分別記為、、、,成績在內的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.18、(1);(2)證明見解析.【解析】(1)運用代入法直接求解即可;(2)設出直線的方程與拋物線方程聯(lián)立,結合一元二次方程根與系數(shù)關系、平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設,,∴OA→?因為直線與拋物線交于兩點兩點在軸的兩側,所以,即過定點.【點睛】關鍵點睛:運用一元二次方程根與系數(shù)關系是解題的關鍵.19、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應的值即為中位數(shù);(3)求出第一組中總人數(shù),得女性人數(shù),然后求得恰有一名女性的方法數(shù)和總的方法數(shù)后可得概率【小問1詳解】解:因為頻率分布直方圖的小矩形面積和為1,所以,解得,【小問2詳解】解:前2組頻率和為,前3組頻率和為,所以中位數(shù)在第3組,設中位數(shù)為,則,;【小問3詳解】解:第一組總人數(shù)為,男性人2人,則女性有4人,不妨記兩名男性為,四名女性為,則隨機抽取2名群眾的可能為,,,共15種方案,其中恰有一名女性的方法數(shù),共8種,所以第1組中隨機抽取2名群眾組成維權志愿者服務隊,求恰有一名女性的概率為20、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎題.21、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標準方程,由點與圓的位置關系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設,則,分析可得面積的最大值,結合直線與圓的位置關系可得圓心到直線的距離,設直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,半徑,設,則,當時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導致出錯,解題的時候要考慮周全,考查運算求解能力,是中檔題.22、(1);(2)見解析;(3).【解析】(1)根據(jù)在處取極值可得,可求得,驗證可知滿足題意;根據(jù)導數(shù)的幾何意義求得切線斜率,利用點斜式可求得切線方程;(2)求導后,分別在和兩種情況下討論導函數(shù)的符號,從而得到的單調性;(3)根據(jù)在上無零點可知在上的最大值和最小值符號一致;分別在,兩種情況下根據(jù)函數(shù)的單調性求解最大值和最小值,利用符號一致構造不等式求得結果.【詳解】(1)由題意得:在處取極值,解得:則當時,,單調遞減;當時,,單調遞增為極小值點,滿足題意函數(shù)當時,由得:在處的切線方程為:,即:(2)由題意知:函數(shù)的定義域為,①當時若,恒成立,恒成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論