四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題含解析_第1頁
四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題含解析_第2頁
四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題含解析_第3頁
四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題含解析_第4頁
四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省蓬安二中2025年高一數學第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國著名數學家華羅庚先生曾說:“數缺形時少直觀,形缺數時難入微,數形結合百般好,隔裂分家萬事休.”在數學的學習和研究中,常用函數的圖象來研究函數的性質,也可用函數的解析式來琢磨函數的圖象的特征,如通過函數的解析式可判斷其在區(qū)間的圖象大致為()A. B.C. D.2.關于的不等式的解集為,且,則()A.3 B.C.2 D.3.若函數在區(qū)間上單調遞減,則實數滿足的條件是A. B.C. D.4.直線(為實常數)的傾斜角的大小是A B.C. D.5.已知函數,若函數有兩個不同的零點,則實數的取值范圍是()A. B.C. D.6.已知集合,

,則(

)A. B.C. D.7.若圓錐的底面半徑為2cm,表面積為12πcm2,則其側面展開后扇形的圓心角等于()A. B.C. D.8.函數f(x)=log3x-8+2x的零點一定位于區(qū)間A. B.C. D.9.已知函數,,其中,若,,使得成立,則()A. B.C. D.10.若是三角形的一個內角,且,則三角形的形狀為()A.鈍角三角形 B.銳角三角形C.直角三角形 D.無法確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數,,若對任意的,都存在,使得,則實數的取值范圍為_________.12.若的最小正周期為,則的最小正周期為______13.函數,若為偶函數,則最小的正數的值為______14.集合,用列舉法可以表示為_________15.函數的圖象一定過定點,則點的坐標是________.16.集合,則____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面直角坐標系內四點,,,.(1)判斷的形狀;(2)A,B,C,D四點是否共圓,并說明理由.18.已知函數,.(1)若角滿足,求;(2)若圓心角為,半徑為2的扇形的弧長為,且,,求.19.設為定義在R上的偶函數,當時,;當時,,直線與拋物線的一個交點為,如圖所示.(1)補全的圖像,寫出的遞增區(qū)間(不需要證明);(2)根據圖象寫出不等式的解集20.提高隧道的車輛通行能力可改善附近路段高峰期間的交通狀況.在一般情況下,隧道內的車流速度(單位:千米/小時)和車流密度(單位:輛/千米)滿足關系式:.研究表明:當隧道內的車流密度達到輛/千米時造成堵塞,此時車流速度是千米/小時.(1)若車流速度不小于千米/小時,求車流密度的取值范圍;(2)隧道內的車流量(單位時間內通過隧道的車輛數,單位:輛/小時)滿足,求隧道內車流量的最大值(精確到輛/小時),并指出當車流量最大時的車流密度.21.(1)若正數a,b滿足,求的最小值,并求出對應的a,b的值;(2)若正數x,y滿足,求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據函數的定義域,函數的奇偶性,函數值的符號及函數的零點即可判斷出選項.【詳解】當時,令,得或,且時,;時,,故排除選項B.因為為偶函數,為奇函數,所以為奇函數,故排除選項C;因為時,函數無意義,故排除選項D;故選:A2、A【解析】根據一元二次不等式與解集之間的關系可得、,結合計算即可.【詳解】由不等式的解集為,得,不等式對應的一元二次方程為,方程的解為,由韋達定理,得,,因為,所以,即,整理,得.故選:A3、A【解析】因為函數在區(qū)間上單調遞減,所以時,恒成立,即,故選A.4、D【解析】計算出直線的斜率,再結合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.5、A【解析】將函數零點個數問題轉化為圖象交點個數問題,再數形結合得解.【詳解】函數有兩個不同的零點,即方程有兩個不同的根,從而函數的圖象和函數的圖象有兩個不同的交點,由可知,當時,函數是周期為1的函數,如圖,在同一直角坐標系中作出函數的圖象和函數的圖象,數形結合可得,當即時,兩函數圖象有兩個不同的交點,故函數有兩個不同的零點.故選:A.6、D【解析】因,,故,應選答案D7、D【解析】利用扇形面積計算公式、弧長公式及其圓的面積計算公式即可得出【詳解】設圓錐的底面半徑為r=2,母線長為R,其側面展開后扇形的圓心角等于θ由題意可得:,解得R=4又2π×2=Rθ∴θ=π故選D【點睛】本題考查了扇形面積計算公式、弧長公式及其圓的面積計算公式,考查了推理能力與計算能力,屬于基礎題8、B【解析】根據零點存在性定理,因為,所以函數零點在區(qū)間(3,4)內,故選擇B考點:零點存在性定理9、B【解析】首先已知等式變形為,構造兩個函數,,問題可轉化為這兩個函數的值域之間的包含關系【詳解】∵,,∴,又,∴,∴由得,,設,,則,,,∴的值域是值域的子集∵,時,,顯然,(否則0屬于的值域,但)∴,∴(*)由上討論知同號,時,(*)式可化為,∴,,當時,(*)式可化為,∴,無解綜上:故選:B【點睛】本題考查函數恒成立問題,解題關鍵是掌握轉化與化歸思想.首先是分離兩個變量,然后構造新函數,問題轉化為兩個函數值域之間的包含關系.其次通過已知關系確定函數值域的形式(或者參數的一個范圍),在這個范圍解不等式才能非常簡單地求解10、A【解析】已知式平方后可判斷為正判斷的正負,從而判斷三角形形狀【詳解】解:∵,∴,∵是三角形的一個內角,則,∴,∴為鈍角,∴這個三角形為鈍角三角形.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、##a≤【解析】時,,原問題.【詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當時,顯然不等式恒成立;當時,,解得;當時,,此時不成立.綜上,.故答案為:.12、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【詳解】的最小正周期為,即,則所以的最小正周期為故答案為:13、【解析】根據三角函數的奇偶性知應可用誘導公式化為余弦函數【詳解】,其為偶函數,則,,,其中最小的正數為故答案【點睛】本題考查三角函數的奇偶性,解題時直接利用誘導公式分析即可14、##【解析】根據集合元素屬性特征進行求解即可.【詳解】因為,所以,可得,因為,所以,集合故答案為:15、【解析】令,得,再求出即可得解.【詳解】令,得,,所以點的坐標是.故答案:16、【解析】分別解出集合,,再根據并集的定義計算可得.【詳解】∵∴,∵,∴,則,故答案為:【點睛】本題考查指數不等式、對數不等式的解法,并集的運算,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)是等腰直角三角形(2)A,B,C,D四點共圓;理由見解析【解析】(1)利用兩點間距離公式可求得,再利用斜率公式可得到,即可判斷三角形形狀;(2)由(1)先求得的外接圓,再判斷點是否在圓上即可【詳解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四點共圓;由(1),設的外接圓的圓心為,則,即,解得,此時,所以的外接圓的方程為,將D點坐標代入方程得,即D點在的外接圓上.∴A,B,C,D四點共圓【點睛】本題考查兩點間距離公式的應用,考查斜率公式的應用,考查三角形的外接圓,考查圓的方程,考查運算能力18、(1)(2)或【解析】(1)對已知式子化簡變形求出,從而可求出的值,(2)先對化簡變形得,再由可求出,再利用弧長公式可求得結果【小問1詳解】∵,∴,∴.【小問2詳解】∵∴,∴,∵,∴或.∴或.19、(1)圖像見解析,單調增區(qū)間,(2)【解析】(1)由偶函數的圖象關于軸對稱可補全圖象,然后寫出遞增區(qū)間;(2)根據圖象寫出答案即可.【小問1詳解】函數圖象如圖所示:觀察可知的單調增區(qū)間為,【小問2詳解】當時,,可得,即根據函數圖象可得,當或時,所以的解集為20、(1);(2)最大值約為3250輛/小時,車流密度約為87輛/千米.【解析】(1)把代入已知式求得,解不等式可得的范圍(2)由(1)求得函數,分別利用函數的單調性和基本不等式分段求得最大值,比較可得【詳解】解:(1)由題意知當(輛/千米)時,(千米/小時),代入得,解得所以當時,,符合題意;當時,令,解得,所以綜上,答:若車流速度不小于40千米/小時,則車流密度的取值范圍是.(2)由題意得,當時,為增函數,所以,等號當且僅當成立;當時,即,等號當且僅當,即成立.綜上,的最大值約為3250,此時約為87.答:隧道內車流量的最大值約為3250輛/小時,此時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論