版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省鹿泉一中等名校2025年數(shù)學高一上期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.562.設a,b均為實數(shù),則“a>b”是“a3A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.下列結論中正確的是()A.當時,無最大值 B.當時,的最小值為3C.當且時, D.當時,4.若函數(shù)的定義域為,滿足:①在內(nèi)是單調(diào)函數(shù);②存在區(qū)間,使在上的值域為,則稱函數(shù)為“上的優(yōu)越函數(shù)”.如果函數(shù)是“上的優(yōu)越函數(shù)”,則實數(shù)的取值范圍是()A.B.C.D.5.三個數(shù)20.3,0.32,log0.32的大小順序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.36.已知,,,則的大小關系A. B.C. D.7.設m、n是兩條不同的直線,、是兩個不同的平面,有下列四個命題:如果,,那么;如果,,那么;如果,,,那么;如果,,,那么其中錯誤的命題是A. B.C. D.8.已知水平放置的四邊形按斜二測畫法得到如圖所示的直觀圖,其中,,,,則原四邊形的面積為()A. B.C. D.9.已知命題p:?n∈N,2n>2021.那么A.?n∈N,2n≤2021 B.?n∈NC.?n∈N,2n≤2021 D.?n∈N10.C,S分別表示一個扇形的周長和面積,下列能作為有序數(shù)對取值的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合A={2,log2m},B={m,n}(m,n∈R),且,則A∪B=___________.12.已知,點在直線上,且,則點的坐標為________13.已知函數(shù)f(x)=x2,若存在t∈R,對任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,則m的最大值為______14.已知函數(shù)若函數(shù)有三個不同的零點,且,則的取值范圍是____15.命題“,”的否定形式為__________________________.16.已知,則的值為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)用函數(shù)單調(diào)性定義證明:函數(shù)在區(qū)間上是嚴格增函數(shù);(2)函數(shù)在區(qū)間上是單調(diào)函數(shù)嗎?為什么?18.計算:(1).(2)19.已知,函數(shù).(1)求的定義域;(2)若在上的最小值為,求的值.20.已知函數(shù).(1)在給定的坐標系中,作出函數(shù)的圖象;(2)寫出函數(shù)的單調(diào)區(qū)間(不需要證明);(3)若函數(shù)的圖象與直線有4個交點,求實數(shù)的取值范圍.21.計算下列各式的值:(1),其中m,n均為正數(shù),為自然對數(shù)的底數(shù);(2),其中且
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C2、C【解析】因為a3-b3=(a-b)(a23、D【解析】利用在單調(diào)遞增,可判斷A;利用均值不等式可判斷B,D;取可判斷C【詳解】選項A,由都在單調(diào)遞增,故在單調(diào)遞增,因此在上當時取得最大值,選項A錯誤;選項B,當時,,故,當且僅當,即時等號成立,由于,故最小值3取不到,選項B錯誤;選項C,令,此時,不成立,故C錯誤;選項D,當時,,故,當且僅當,即時,等號成立,故成立,選項D正確故選:D4、D【解析】由于是“上的優(yōu)越函數(shù)”且函數(shù)在上單調(diào)遞減,由題意得,,問題轉化為與在時有2個不同的交點,結合二次函數(shù)的性質可求【詳解】解:因為是“上的優(yōu)越函數(shù)”且函數(shù)在上單調(diào)遞減,若存在區(qū)間,使在上的值域為,由題意得,,所以,,即與在時有2個不同的交點,根據(jù)二次函數(shù)單調(diào)性質可知,即故選:D5、D【解析】由已知得:,,,所以.故選D.考點:指數(shù)函數(shù)和對數(shù)函數(shù)的圖像和性質.6、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出【詳解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故選D【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題7、B【解析】根據(jù)空間直線與直線,直線與平面的位置關系及幾何特征,逐一分析四個命題的真假,可得答案【詳解】①如果α∥β,m?α,那么m∥β,故正確;②如果m⊥α,β⊥α,那么m∥β,或m?β,故錯誤;③如果m⊥n,m⊥α,n∥β,那么α,β關系不能確定,故錯誤;④如果m∥β,m?α,α∩β=n,那么m∥n,故正確故答案為B【點睛】本題以命題的真假判斷與應用為載體考查了空間直線與直線,直線與平面的位置關系及幾何特征等知識點8、B【解析】根據(jù)直觀圖畫出原圖,可得原圖形為直角梯形,計算該直角梯形的面積即可.【詳解】過點作,垂足為則由已知可得四邊形為矩形,為等腰直角三角形,根據(jù)直觀圖畫出原圖如下:可得原圖形為直角梯形,,且,可得原四邊形的面積為故選:B.9、A【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題p:?n∈N,2n>2021的否定?p為:?n∈N,故選:A10、B【解析】設扇形半徑為,弧長為,則,,根據(jù)選項代入數(shù)據(jù)一一檢驗即可【詳解】設扇形半徑為,弧長為,則,當,有,則無解,故A錯;當,有得,故B正確;當,有,則無解,故C錯;當,有,則無解,故D錯;故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)條件得到,解出,進而得到.【詳解】因為,所以且,所以,解得:,則,,所以.故答案為:12、,【解析】設點,得出向量,代入坐標運算即得的坐標,得到關于的方程,從而可得結果.【詳解】設點,因為點在直線,且,,或,,即或,解得或;即點的坐標是,.【點睛】本題考查了平面向量線性運算的坐標表示以及平面向量的共線問題,意在考查對基礎知識的掌握與應用,是基礎題.13、5【解析】設g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.從而得到g(1)≤0且g(m)≤0,求得t的范圍,討論t的最值,代入m的不等式求得m的范圍,結合條件可得m的最大值【詳解】函數(shù)f(x)=x2,那么f(x+t)=x2+2tx+t2,對任意實數(shù)x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,從而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0當時,;當時,綜上可得,由m為正整數(shù),可得m的最大值為5故答案為5【點睛】本題考查不等式恒成立問題解法,注意運用二次函數(shù)的性質,考查運算求解能力,是中檔題14、;【解析】作圖可知:點睛:利用函數(shù)零點情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數(shù)后轉化為函數(shù)的值域(最值)問題求解.(3)轉化為兩熟悉的函數(shù)圖象的上、下關系問題,從而構建不等式求解.15、##【解析】根據(jù)全稱量詞命題的否定直接得出結果.【詳解】命題“”的否定為:,故答案為:16、##【解析】根據(jù)給定條件結合二倍角的正切公式計算作答.【詳解】因,則,所以的值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)不是單調(diào)函數(shù),理由見解析.【解析】(1)根據(jù)函數(shù)解析式在給定區(qū)間內(nèi)任取,判斷對應函數(shù)值的大小關系,即可說明函數(shù)的單調(diào)性.(2)利用三元基本不等式求在上的最值并確定等號成立的條件,即可判斷的單調(diào)性.【小問1詳解】由題設,且,任取,則,又,,,,即,∴,即,∴函數(shù)在區(qū)間上是嚴格增函數(shù);【小問2詳解】由題設,在上,當且僅當時等號成立,∴,顯然在的兩側單調(diào)性不同.∴在上不是單調(diào)函數(shù).18、(1)20(2)-2【解析】根據(jù)指數(shù)運算公式以及對數(shù)運算公式即可求解。【詳解】(1)=(2)=【點睛】本題考查指數(shù)與對數(shù)的運算,以及計算能力,(1)根據(jù)指數(shù)冪的運算法則求解即可。(2)根據(jù)對數(shù)運算的性質求解即可,屬于基礎題。19、(1);(2).【解析】(1)由題意,函數(shù)的解析式有意義,列出不等式組,即可求解函數(shù)的定義域;(2)由題意,化簡得,設,根據(jù)復合函數(shù)性質,分類討論得到函數(shù)的單調(diào)性,得出函數(shù)最值的表達式,即可求解【詳解】(1)由題意,函數(shù),滿足,解得,即函數(shù)的定義域為(2)由,設,則表示開口向下,對稱軸的方程為,所以在上為單調(diào)遞增函數(shù),在單調(diào)遞減,根據(jù)復合函數(shù)的單調(diào)性,可得因為,函數(shù)在為單調(diào)遞增函數(shù),在單調(diào)遞減,所以,解得;故實數(shù)的值為【點睛】本題主要考查了對數(shù)函數(shù)的圖象與性質的應用,以及與對數(shù)函數(shù)復合函數(shù)的最值問題,其中解答中熟記對數(shù)函數(shù)的圖象與性質,合理分類討論求解是解答本題的關鍵,著重考查了推理與運算能力,屬于中檔試題20、(1)圖象見解析;(2)單調(diào)增區(qū)間為;單調(diào)減區(qū)間是為;(3).【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共場所綠化養(yǎng)護景觀管理手冊
- 2026海南渠田水利水電勘測設計有限公司天津分公司招聘備考題庫及答案詳解(新)
- 2026年數(shù)據(jù)庫性能調(diào)優(yōu)實戰(zhàn)課程
- 起重吊裝安全督查課件
- 職業(yè)共病管理中的病理機制探討
- 職業(yè)健康科普資源整合策略
- 職業(yè)健康監(jiān)護中的標準化質量管理體系
- 職業(yè)健康溝通策略創(chuàng)新實踐
- 職業(yè)健康歸屬感對醫(yī)療員工組織承諾的正向影響
- 黃石2025年湖北大冶市中醫(yī)醫(yī)院招聘衛(wèi)生專業(yè)技術人員5人筆試歷年參考題庫附帶答案詳解
- 2026屆南通市高二數(shù)學第一學期期末統(tǒng)考試題含解析
- 寫字樓保潔培訓課件
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫有完整答案詳解
- 計量宣貫培訓制度
- 運輸人員教育培訓制度
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫有答案詳解
- 升降貨梯買賣安裝與使用說明書合同
- 河南豫能控股股份有限公司及所管企業(yè)2026屆校園招聘127人考試備考題庫及答案解析
- 房地產(chǎn)公司2025年度總結暨2026戰(zhàn)略規(guī)劃
- 物業(yè)管家客服培訓課件
- 虛假貿(mào)易十不準培訓課件
評論
0/150
提交評論