版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東臨沂市莒南縣第三中學(xué)2025-2026學(xué)年高二上數(shù)學(xué)期末監(jiān)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)是函數(shù)圖象上的動(dòng)點(diǎn)(其中的自然對數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.2.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直3.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.4.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=()A. B.C. D.5.如圖所示,直三棱柱中,,,分別是,的中點(diǎn),,則與所成角的余弦值為()A. B.C. D.6.已知等差數(shù)列且,則數(shù)列的前13項(xiàng)之和為()A.26 B.39C.104 D.527.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.8.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.109.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.810.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.811.如圖,是函數(shù)的部分圖象,且關(guān)于直線對稱,則()A. B.C. D.12.已知正四面體的底面的中心為為的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若正數(shù)x、y滿足,則的最小值等于________.14.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;15.過點(diǎn)與直線平行的直線的方程是________.16.長方體中,,,已知點(diǎn)H,A,三點(diǎn)共線,且,則點(diǎn)H到平面ABCD的距離為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,底面,.點(diǎn),,分別為棱,,的中點(diǎn),是線段的中點(diǎn),,(1)求證:平面;(2)求二面角的正弦值;(3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長18.(12分)已知橢圓的右焦點(diǎn)為,且經(jīng)過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點(diǎn)為,過點(diǎn)的直線(與軸不重合)交橢圓于兩點(diǎn),直線交直線于點(diǎn),若直線上存在另一點(diǎn),使.求證:三點(diǎn)共線.19.(12分)已知點(diǎn)和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點(diǎn)作圓的切線,其中為切點(diǎn),求四邊形PAMB的面積的最小值.20.(12分)如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn)(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值21.(12分)已知數(shù)列{}的首項(xiàng)=2,(n≥2,),,.(1)證明:{+1}為等比數(shù)列;(2)設(shè)數(shù)列{}的前n項(xiàng)和,求證:.22.(10分)如圖,在四棱錐中,底面,,,,,為上一點(diǎn),且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點(diǎn)的坐標(biāo),則到直線的距離最小值為點(diǎn)到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A2、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C3、D【解析】根據(jù)前三個(gè)五邊形數(shù)可推斷出第四個(gè)五邊形數(shù).【詳解】第一個(gè)五邊形數(shù)為,第二個(gè)五邊形數(shù)為,第三個(gè)五邊形數(shù)為,故第四個(gè)五邊形數(shù)為.故選:D.4、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時(shí),等號成立,即,故選:A5、A【解析】取的中點(diǎn)為,的中點(diǎn)為,然后可得或其補(bǔ)角即為與所成角,然后在中求出答案即可.【詳解】取的中點(diǎn)為,的中點(diǎn)為,,,所以或其補(bǔ)角即為與所成角,設(shè),則,,在,,故選:A6、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項(xiàng)和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項(xiàng)之和為,故選:A7、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C8、A【解析】計(jì)算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.9、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C10、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.11、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.12、B【解析】連接,再取中點(diǎn),連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點(diǎn),連接,因?yàn)榉謩e為VC,中點(diǎn),則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)取等號,故答案為.【點(diǎn)睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗(yàn)證等號能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)否在定義域內(nèi),二是多次用或時(shí)等號能否同時(shí)成立).14、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.詳解】若,則或,異面,或,相交,①錯(cuò)誤;若,則,②正確;若,則或或與相交,③錯(cuò)誤;若,則,④正確;故答案為:②④.15、【解析】根據(jù)給定條件設(shè)出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設(shè)與直線平行的直線的方程為,而點(diǎn)在直線上,于是得,解得,所以所求的直線的方程為.故答案為:16、【解析】在長方體中,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,利用已知條件求出點(diǎn)H的坐標(biāo)作答.【詳解】在長方體中,以點(diǎn)A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,因點(diǎn)H,A,三點(diǎn)共線,令,點(diǎn),則,又,則,解得,所以點(diǎn)到平面ABCD的距離為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),證明線面平行只需求出平面的法向量,計(jì)算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個(gè)半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因?yàn)槠矫鍮DE,所以MN//平面BDE.(2)解:易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)椋?,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點(diǎn)】直線與平面平行、二面角、異面直線所成角【名師點(diǎn)睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點(diǎn)到平面的距離都很容易.18、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計(jì)算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點(diǎn)M的坐標(biāo),求出點(diǎn)N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點(diǎn),由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點(diǎn),直線的斜率,直線的斜率,,而,即,所以三點(diǎn)共線.【點(diǎn)睛】思路點(diǎn)睛:解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系19、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當(dāng)時(shí),面積最小.此時(shí)...20、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因?yàn)槠矫?,四邊形為矩形,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因?yàn)?,因此,平?所以,平面的一個(gè)法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.21、(1)證明見解析(2)證明見解析【解析】(1)利用已知條件證明為常數(shù)即可;(2)求出和通項(xiàng)公式,再求出通項(xiàng)公式,利用裂項(xiàng)相消法可求,判斷的單調(diào)性即可求其范圍.【小問1詳解】∵=2,(n≥2,),∴當(dāng)n≥2時(shí),(常數(shù)),∴數(shù)列{+1}是公比為3的等比數(shù)列;【小問2詳解】由(1)知,數(shù)列{+1}是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年紹興市上虞區(qū)中醫(yī)醫(yī)院醫(yī)共體招聘編外人員5人模擬筆試試題及答案解析
- 2025年福建泉州惠安縣宏福殯儀服務(wù)有限公司招聘5人參考考試試題及答案解析
- 2025年杭州市上城區(qū)閘弄口街道社區(qū)衛(wèi)生服務(wù)中心招聘編外1人考試參考試題及答案解析
- 深度解析(2026)GBT 26103.5-2010NGCLZ型帶制動(dòng)輪鼓形齒式聯(lián)軸器
- 2025浙江寧波市象山半邊山紫冠投資有限公司酒店管理分公司(寧波象山海景皇冠假日酒店)招聘3人參考考試題庫及答案解析
- 深度解析(2026)《GBT 25982-2024客車車內(nèi)噪聲限值及測量方法》(2026年)深度解析
- 2025四川德陽市旌陽區(qū)孝泉鎮(zhèn)衛(wèi)生院(旌陽區(qū)第二人民醫(yī)院)招聘2人備考筆試題庫及答案解析
- 深度解析(2026)《GBT 25796-2010反應(yīng)艷黃W-2G(C.I.反應(yīng)黃39)》
- 深度解析(2026)《GBT 25734-2010牦牛肉干》(2026年)深度解析
- 深度解析(2026)《GBT 25688.2-2010土方機(jī)械 維修工具 第2部分:機(jī)械式拉拔器和推拔器》
- 2025至2030中國聚四氟乙烯(PTFE)行業(yè)經(jīng)營狀況及投融資動(dòng)態(tài)研究報(bào)告
- 教育、科技、人才一體化發(fā)展
- 營銷與客戶關(guān)系管理-深度研究
- 耐壓試驗(yàn)操作人員崗位職責(zé)
- 2020-2021學(xué)年廣東省廣州市黃埔區(qū)二年級(上)期末數(shù)學(xué)試卷
- 財(cái)政部政府采購法律法規(guī)與政策學(xué)習(xí)知識考試題庫(附答案)
- 長鑫存儲(chǔ)在線測評題
- DL∕T 5344-2018 電力光纖通信工程驗(yàn)收規(guī)范
- T-CCIIA 0004-2024 精細(xì)化工產(chǎn)品分類
- 世界當(dāng)代史教材
- 高壓電動(dòng)機(jī)保護(hù)原理及配置
評論
0/150
提交評論