天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案_第1頁
天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案_第2頁
天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案_第3頁
天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案_第4頁
天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津市益中學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細答案一、壓軸題1.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足.(1)a=;b=;直角三角形AOC的面積為.(2)已知坐標(biāo)軸上有兩動點P,Q同時出發(fā),P點從C點出發(fā)以每秒2個單位長度的速度向點O勻速移動,Q點從O點出發(fā)以每秒1個單位長度的速度向點A勻速移動,點P到達O點整個運動隨之結(jié)束.AC的中點D的坐標(biāo)是(4,3),設(shè)運動時間為t秒.問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請求出t的值;若不存在,請說明理由.(3)在(2)的條件下,若∠DOC=∠DCO,點G是第二象限中一點,并且y軸平分∠GOD.點E是線段OA上一動點,連接接CE交OD于點H,當(dāng)點E在線段OA上運動的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論(三角形的內(nèi)角和為180).解析:(1)6;8;24;(2)存在時,使得△ODP與△ODQ的面積相等;(3)∠GOD+∠ACE=∠OHC,見解析【解析】【分析】(1)利用非負性即可求出a,b即可得出結(jié)論,即可求出△ABC的面積;(2)先表示出OQ,OP,利用那個面積相等,建立方程求解即可得出結(jié)論;(3)先判斷出∠OAC=∠AOD,進而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出結(jié)論.【詳解】解:(1)解:(1)∵,∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S△ABC=6×8÷2=24,故答案為(0,6),(8,0);6;8;24(2)∵由時,∴存在時,使得△ODP與△ODQ的面積相等(3))∴2∠GOA+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y軸平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如圖,過點H作HF∥OG交x軸于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【點睛】此題是三角形綜合題,主要考查了非負性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.2.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大?。ㄓ煤恋拇鷶?shù)式表示).解析:(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點O是AC邊的垂直平分線與BC的交點,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點睛】本題綜合考查了三角形全等以及三角形外角和定理.3.探究發(fā)現(xiàn):如圖①,在中,內(nèi)角的平分線與外角的平分線相交于點.(1)若,則;若,則;(2)由此猜想:與的關(guān)系為(不必說明理由).拓展延伸:如圖②,四邊形的內(nèi)角與外角的平分線相交于點,.(3)若,,求的度數(shù),由此猜想與,之間的關(guān)系,并說明理由.解析:(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根據(jù)兩角平分線寫出對應(yīng)的等式關(guān)系,再分別寫出兩個三角形內(nèi)角和的等式關(guān)系,最后聯(lián)立兩等式化解,將的角度帶入即可求解;(2)由(1)可得,即可求解;(3)在與的平分線相交于點,可知,又因為,兩直線平行內(nèi)錯角相等,得出,再根據(jù)三角形一外角等于不相鄰的兩個內(nèi)角的和,得出,再由四邊形的內(nèi)角和定理得出,最后在中:,代入整理即可得出結(jié)論.【詳解】解:(1)由題可知:BE為的角平分線,CE為的角平分線,=2=2,=2,,三角形內(nèi)角和等于,在中:,即:,①,在中:,即:,②,綜上所述聯(lián)立①②,由①-②×2可得:,,,,當(dāng),則;當(dāng),則;故答案為,;(2)由(1)知:(或);(3)∵與的平分線相交于點,∴,,又∵,∴(兩直線平行,內(nèi)錯角相等),∵是的一個外角,∴(三角形一外角等于不相鄰的兩個內(nèi)角的和),在四邊形中,四邊形內(nèi)角和為,,,∴,∴①,∴,即,在中:,,由上可得:,②,又∵,∴,,,由①②可得,,,.【點睛】本題主要考查了三角形的外角性質(zhì)的應(yīng)用和角平分線的定義,能正確運用性質(zhì)進行推理和計算是解此題的關(guān)鍵,注意三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.4.閱讀材料并完成習(xí)題:在數(shù)學(xué)中,我們會用“截長補短”的方法來構(gòu)造全等三角形解決問題.請看這個例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質(zhì)得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉(zhuǎn)化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請你用上面學(xué)到的方法完成下面的習(xí)題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.解析:(1)2;(2)4【解析】【分析】(1)根據(jù)題意可直接求等腰直角三角形EAC的面積即可;(2)延長MN到K,使NK=GH,連接FK、FH、FM,由(1)易證,則有FK=FH,因為HM=GH+MN易證,故可求解.【詳解】(1)由題意知,故答案為2;(2)延長MN到K,使NK=GH,連接FK、FH、FM,如圖所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,F(xiàn)H=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【點睛】本題主要考查全等三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)截長補短法及割補法求面積的運用.5.如圖,在中,為的中點,,.動點從點出發(fā),沿方向以的速度向點運動;同時動點從點出發(fā),沿方向以的速度向點運動,運動時間是.(1)在運動過程中,當(dāng)點位于線段的垂直平分線上時,求出的值;(2)在運動過程中,當(dāng)時,求出的值;(3)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.解析:(1)時,點位于線段的垂直平分線上;(2);(3)不存在,理由見解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結(jié)合圖形用含t的代數(shù)式表示CP的長度,根據(jù)線段垂直平分線的性質(zhì)得到CP=CQ,列式計算即可;(2)根據(jù)全等三角形的對應(yīng)邊相等列式計算;(3)根據(jù)全等三角形的對應(yīng)邊相等列式計算,判斷即可.【詳解】解:(1)由題意得,則,當(dāng)點位于線段的垂直平分線上時,,∴,解得,,則當(dāng)時,點位于線段的垂直平分線上;(2)∵為的中點,,∴,∵,∴,∴,解得,,則當(dāng)時,;(3)不存在,∵,∴,則解得,,,∴不存在某一時刻,使.【點睛】本題考查的是幾何動點運動問題、全等三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.6.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點D.求∠BDC的大?。ㄓ煤恋拇鷶?shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點F,求∠BFC的大?。ㄓ煤恋拇鷶?shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).7.?dāng)?shù)學(xué)活動課上,老師出了這樣一個題目:“已知:于,點、分別在和上,作線段和(如圖1),使.求證:”.(1)聰聰同學(xué)給出一種證明問題的輔助線:如圖2,過作,交于.請你根據(jù)聰聰同學(xué)提供的輔助線(或自己添加其它輔助線),給出問題的證明.(2)若點在直線下方,且知,直接寫出和之間的數(shù)量關(guān)系.解析:(1)見解析;(2)【解析】【分析】(1)根據(jù)聰聰提供的輔助線作法進行證明,先由平行線的性質(zhì)得:,,再證明,可得結(jié)論;(2)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得結(jié)論.【詳解】解:(1)證明:如圖2,過作,交于,,,,,,,,;(2)解:,理由如下:如圖3,,,,,,∴.【點睛】本題主要考查了平行線的性質(zhì)和判定以及三角形外角性質(zhì)的運用,熟練掌握平行線的性質(zhì)和判定是解決問題的關(guān)鍵.8.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側(cè),過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識別圖形進行推理是解題的關(guān)鍵.9.問題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC.請寫出DE、BD、CE三條線段的數(shù)量關(guān)系.(不需要證明)實際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標(biāo)為(-2,0),點A的坐標(biāo)為(-6,3),請直接寫出B點的坐標(biāo).解析:(1)證明見解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(2)根據(jù)三角形內(nèi)角和定理、平角的定義證明∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(3)根據(jù)△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.【詳解】(1)證明:∵BD⊥直線m,CE⊥直線m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:數(shù)量關(guān)系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如圖,作AE⊥x軸于E,BF⊥x軸于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴點B的坐標(biāo)為B(1,4).【點睛】本題考查的是全等三角形的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.10.已知:中,過B點作BE⊥AD,.(1)如圖1,點在的延長線上,連,作于,交于點.求證:;(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.解析:(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結(jié)論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結(jié)論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結(jié)論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設(shè),則,,.【點睛】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.另外對于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.11.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點A、B分別在CM、CN上,分別過點A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.解析:探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡單的綜合題.12.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個問題:“如圖1,等腰直角三角形的三個頂點分別落在三條等距的平行線,,上,,且每兩條平行線之間的距離為1,求AB的長度”.在研究這道題的解法和變式的過程中,同學(xué)們提出了很多想法:(1)小明說:我只需要過B、C向作垂線,就能利用全等三角形的知識求出AB的長.(2)小林說:“我們可以改變的形狀.如圖2,,,且每兩條平行線之間的距離為1,求AB的長.”(3)小謝說:“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個頂點分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長、”請你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長度.解析:(1);(2);(3)【解析】【分析】(1)分別過點B,C向l1作垂線,交l1于M,N兩點,證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過點B,C向l1作垂線,交l1于點P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交l3于點P,過A作l3的垂線,交l3于點Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長,即為AB.【詳解】解:(1)如圖,分別過點B,C向l1作垂線,交l1于M,N兩點,由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過點B,C向l1作垂線,交l1于P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交于點P,過A作l3的垂線,交于點Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.13.某校八年級數(shù)學(xué)興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.解析:(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.14.如圖,中,,,點為射線上一動點,連結(jié),作且.(1)如圖1,過點作交于點,求證:;(2)如圖2,連結(jié)交于點,若,,求證:點為中點.(3)當(dāng)點在射線上,連結(jié)與直線交于點,若,,則______.(直接寫出結(jié)果)解析:(1)見解析;(2)見解析;(3)或【解析】【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】解:(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當(dāng)點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,當(dāng)點E在線段BC上時,,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.15.如圖,在平面直角坐標(biāo)系中,,,,點、在軸上且關(guān)于軸對稱.(1)求點的坐標(biāo);(2)動點以每秒2個單位長度的速度從點出發(fā)沿軸正方向向終點運動,設(shè)運動時間為秒,點到直線的距離的長為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點到的距離為時,連接,作的平分線分別交、于點、,求的長.解析:(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點、關(guān)于軸對稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點到的距離為,∴,∴,∴,延長交于點,過點作軸于點,連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點睛】本題是三角形綜合題,涉及的知識有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運用面積法求線段的長是解本題的關(guān)鍵.二、選擇題16.在數(shù)3,﹣3,,中,最小的數(shù)為()A.﹣3 B. C. D.3解析:A【解析】【分析】有理數(shù)大小比較的法則:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可.【詳解】解:∵3>>>﹣3,∴在數(shù)3,﹣3,,中,最小的數(shù)為﹣3.故選:A.【點睛】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小.17.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應(yīng)的點是()A.點M B.點N C.點P D.點Q解析:B【解析】【分析】【詳解】∵實數(shù)-3,x,3,y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,∴原點在點P與N之間,∴這四個數(shù)中絕對值最小的數(shù)對應(yīng)的點是點N.故選B.18.=()A.1 B.2 C.3 D.4解析:B【解析】【分析】根據(jù)算術(shù)平方根的概念可得出答案.【詳解】解:根據(jù)題意可得:,故答案為:B.【點睛】本題考查算術(shù)平方根的概念,解題關(guān)鍵在于對其概念的理解.19.下列方程中,以為解的是()A. B. C. D.解析:A【解析】【分析】把代入方程,只要是方程的左右兩邊相等就是方程的解,否則就不是.【詳解】解:A中、把代入方程得左邊等于右邊,故A對;B中、把代入方程得左邊不等于右邊,故B錯;C中、把代入方程得左邊不等于右邊,故C錯;D中、把代入方程得左邊不等于右邊,故D錯.故答案為:A.【點睛】本題考查方程的解的知識,解題關(guān)鍵在于把x值分別代入方程進行驗證即可.20.2019年6月21日甬臺溫高速溫嶺聯(lián)絡(luò)線工程初步設(shè)計通過,本項目為沿海高速和甬臺溫高速公路之間的主要聯(lián)絡(luò)通道,總投資1289000000元,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.0.1289×10 B.1.289×10C.1.289×10 D.1289×10解析:C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1289000000元,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為1.289×109.故選:C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.21.晚上七點剛過,小強開始做數(shù)學(xué)作業(yè),一看鐘,發(fā)現(xiàn)此時時針和分針在同一直線上;做完數(shù)學(xué)作業(yè)八點不到,此時時針和分針又在同一直線上,則小強做數(shù)學(xué)作業(yè)花了多少時間()A.30分鐘 B.35分鐘 C.分鐘 D.分鐘解析:D【解析】【分析】由題意知,開始寫作業(yè)時,分針和時針組成一平角,寫完作業(yè)時,分針和時針重合.設(shè)小強做數(shù)學(xué)作業(yè)花了x分鐘,根據(jù)分針追上時針時多轉(zhuǎn)了180°列方程求解即可.【詳解】分針?biāo)俣龋?0度÷5分=6度/分;時針?biāo)俣龋?0度÷60分=0.5度/分.設(shè)小強做數(shù)學(xué)作業(yè)花了x分鐘,由題意得6x-0.5x=180,解之得x=.故選D.【點睛】本題考查了一元一次方程的應(yīng)用---追擊問題,解答本題的關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.22.下列判斷正確的是()A.有理數(shù)的絕對值一定是正數(shù).B.如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等.C.如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身.D.如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù).解析:C【解析】試題解析:A∵0的絕對值是0,故本選項錯誤.B∵互為相反數(shù)的兩個數(shù)的絕對值相等,故本選項正確.C如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身.D∵0的絕對值是0,故本選項錯誤.故選C.23.下列每對數(shù)中,相等的一對是()A.(﹣1)3和﹣13 B.﹣(﹣1)2和12 C.(﹣1)4和﹣14 D.﹣|﹣13|和﹣(﹣1)3解析:A【解析】【分析】根據(jù)乘方和絕對值的性質(zhì)對各個選項進行判斷即可.【詳解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D.﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故選A.24.一周時間有604800秒,604800用科學(xué)記數(shù)法表示為()A. B. C. D.解析:B【解析】【分析】科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值時,是正數(shù);當(dāng)原數(shù)的絕對值時,是負數(shù).【詳解】604800的小數(shù)點向左移動5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論