2026屆上海市高三一模高考模擬數(shù)學(xué)試卷試題(含答案詳解)_第1頁(yè)
2026屆上海市高三一模高考模擬數(shù)學(xué)試卷試題(含答案詳解)_第2頁(yè)
2026屆上海市高三一模高考模擬數(shù)學(xué)試卷試題(含答案詳解)_第3頁(yè)
2026屆上海市高三一模高考模擬數(shù)學(xué)試卷試題(含答案詳解)_第4頁(yè)
2026屆上海市高三一模高考模擬數(shù)學(xué)試卷試題(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page11頁(yè),共=sectionpages33頁(yè)試卷第=page11頁(yè),共=sectionpages33頁(yè)上海市2025學(xué)年度第一學(xué)期期末質(zhì)量監(jiān)控試卷高三數(shù)學(xué)(滿分150分,完卷時(shí)間120分鐘)

2025.12考生注意:1.本考試設(shè)試卷和答題紙兩部分,試卷包括試題與答題要求,所有答題必須涂(選擇題)或?qū)懀ǚ沁x擇題)在答題紙上,做在試卷上一律不得分.2.答題前,務(wù)必在答題紙上填寫座位號(hào)和姓名.3.答題紙與試卷在試題編號(hào)上是一一對(duì)應(yīng)的,答題時(shí)應(yīng)特別注意,不能錯(cuò)位.一、填空題(本大題共有12題,滿分54分,第1~6題每題4分,第7~12題每題5分)考生應(yīng)在答題紙的相應(yīng)位置直接填寫結(jié)果.1.已知集合,,則.2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.3.不等式的解集為.4.復(fù)數(shù)(其中i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為.5.某運(yùn)動(dòng)員在某次男子10米氣手槍射擊比賽中的得分?jǐn)?shù)據(jù)(單位:環(huán))如莖葉圖所示,則這組數(shù)據(jù)的平均數(shù)為.6.已知二項(xiàng)式的展開(kāi)式的二項(xiàng)式系數(shù)之和為,則展開(kāi)式中含項(xiàng)的系數(shù)是.7.比較兩數(shù)的大?。海?.設(shè),若,則的值為.9.已知平面內(nèi)兩個(gè)非零向量、相互垂直,,若,則實(shí)數(shù)k的值為.10.將3名男生和3名女生排成一排,若從左邊第一個(gè)學(xué)生開(kāi)始依次往右數(shù),無(wú)論數(shù)到幾人,男生人數(shù)都大于或等于女生人數(shù),則有種不同的排法.(結(jié)果用數(shù)值表示)11.某社區(qū)為擴(kuò)大居民的活動(dòng)區(qū)域,計(jì)劃將社區(qū)內(nèi)原有的半徑為10m的圓形花壇擴(kuò)建成一個(gè)矩形花園.若要求擴(kuò)建前的圓與擴(kuò)建后矩形的兩鄰邊和一條對(duì)角線都相切,則矩形花園占地面積的最小值為.(結(jié)果精確到)12.在三棱錐中,,,,,,則此三棱錐的體積為.二、選擇題(本大題共有4題,滿分18分,第13-14題每題4分,第15-16題每題5分)每題有且只有一個(gè)正確答案,考生應(yīng)在答題紙的相應(yīng)位置上,將所選答案的代號(hào)涂黑.13.若空間中三條不同的直線,,滿足,,則是,,共面的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件14.下列函數(shù)中,對(duì)任意的、時(shí),均有的是(

)A. B.C. D.15.已知函數(shù)其表達(dá)式為,,函數(shù)其表達(dá)式為,若對(duì)任意,都有,則方程的解的個(gè)數(shù)為(

)A.6 B.7 C.8 D.916.定義:一個(gè)平面封閉區(qū)域內(nèi)任意兩點(diǎn)之間的距離的最大值稱為該區(qū)域的“直徑”.在中,,邊上的高等于,以的各邊為直徑向外分別作三個(gè)半圓,記三個(gè)半圓圍成的平面區(qū)域的“直徑”為,則以下兩個(gè)結(jié)論:①當(dāng)時(shí),;②的最大值為(

)A.①正確,②錯(cuò)誤 B.①②都正確 C.①錯(cuò)誤,②正確 D.①②都錯(cuò)誤三、解答題(本大題滿分78分)本大題共有5題,解答下列各題必須在答題紙相應(yīng)編號(hào)的規(guī)定區(qū)域內(nèi)寫出必要的步驟.17.已知函數(shù)(、,)的周期為,在時(shí)取到最大值,記.(1)求函數(shù)的表達(dá)式;(2)若數(shù)列為等差數(shù)列,,,記,求數(shù)列的前項(xiàng)和.18.已知四棱錐的底面是直角梯形,,,,是邊長(zhǎng)為2的正三角形,側(cè)面底面ABCD.(1)證明:;(2)求點(diǎn)到平面的距離.19.在乒乓球比賽中,一個(gè)發(fā)球回合時(shí)長(zhǎng)是指從運(yùn)動(dòng)員發(fā)球開(kāi)始,到其中一方得分為止的時(shí)間.現(xiàn)記錄一場(chǎng)比賽中運(yùn)動(dòng)員連續(xù)10個(gè)發(fā)球回合時(shí)長(zhǎng)(單位:秒),數(shù)據(jù)如下:3.2,4.7,5.3,4.1,5.8,9.6,12.4,6.5,7.2,8.9.(1)求這組數(shù)據(jù)的極差和中位數(shù);(2)如果定義一個(gè)發(fā)球回合時(shí)長(zhǎng)超過(guò)5.0秒為“長(zhǎng)發(fā)球回合”,那么從這10個(gè)發(fā)球回合時(shí)長(zhǎng)中隨機(jī)抽取3個(gè),求至少有2個(gè)是“長(zhǎng)發(fā)球回合”的概率;(3)假設(shè)甲乙運(yùn)動(dòng)員相約進(jìn)行一次比賽,比賽有兩種賽制可選:①一局定勝負(fù):只打一局,勝者贏得比賽;②三局兩勝:先贏得兩局者為勝,最多打三局.若甲在一局中獲勝的概率為.從甲的角度考慮,哪種賽制對(duì)他更有利?請(qǐng)說(shuō)明理由.20.已知橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn).的最大值是,的最小值是,滿足.(1)求該橢圓的離心率;(2)若,點(diǎn)在橢圓上,且在軸上方,線段的中點(diǎn)在以原點(diǎn)為圓心,為半徑的圓上,求直線的斜率;(3)設(shè)線段的中點(diǎn)為的垂直平分線與軸和軸分別交于兩點(diǎn),是坐標(biāo)原點(diǎn).記的面積為,的面積為,求的取值范圍.21.已知函數(shù),正常數(shù),記.(1)當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并說(shuō)明理由;(2)若函數(shù)既存在極小值也存在極大值,求實(shí)數(shù)a的取值范圍;(3)求證:對(duì)于任意正整數(shù)n,都有.答案第=page11頁(yè),共=sectionpages22頁(yè)答案第=page11頁(yè),共=sectionpages22頁(yè)1.【分析】根據(jù)集合的交集運(yùn)算,即可求解.【詳解】由題意,集合,,所以.故答案為:2.4【分析】根據(jù)給定條件,求出拋物線的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程即可.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,所以所求距離為.故答案為:43.【分析】將分式不等式化為一元二次不等式,進(jìn)而求解解集即可.【詳解】因?yàn)?,所以,即,可得,解?故答案為:4.【分析】先利用復(fù)數(shù)的除法法則將化簡(jiǎn),再利用復(fù)數(shù)的幾何意義即可得解.【詳解】,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為.故答案為:.5.【分析】先讀取莖葉圖得到數(shù)據(jù),再利用平均數(shù)公式求解平均數(shù)即可.【詳解】由題意得得分?jǐn)?shù)據(jù)分別為,則平均數(shù)為.故答案為:6.10【解析】根據(jù)二項(xiàng)式系數(shù)和為得到,再利用二項(xiàng)式定理得到答案.【詳解】二項(xiàng)式的展開(kāi)式的二項(xiàng)式系數(shù)之和為,故.展開(kāi)式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)是.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7.【分析】構(gòu)造函數(shù),利用函數(shù)導(dǎo)數(shù)與單調(diào)性分析即可.【詳解】設(shè)函數(shù),由,令,解得:當(dāng),當(dāng),所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,即,即,所以,因?yàn)楹瘮?shù)在單調(diào)遞增,所以,故答案為:.8.2【分析】根據(jù)題意利用誘導(dǎo)公式結(jié)合弦化切可得,運(yùn)算求解即可.【詳解】因?yàn)椋瑒t,可得,即,整理可得,解得或(舍去),所以的值為2.故答案為:2.9.【分析】根據(jù)給定條件,利用向量數(shù)量積運(yùn)算律及夾角公式列式求解.【詳解】由兩個(gè)非零向量、相互垂直,得,而,則,,因此,解得,經(jīng)驗(yàn)證符合題意,所以實(shí)數(shù)k的值為.故答案為:10.【分析】根據(jù)分類加法與分步乘法原理將第二位分為男生和女生兩種情況,結(jié)合排列組合數(shù)逐步計(jì)算即可得結(jié)論.【詳解】由題可知,從左邊開(kāi)始第一個(gè)學(xué)生為男生有種安排方法:①若第二位為男生:第三位為男生時(shí)的方法數(shù)為種,第三位為女生時(shí)第四位為男生時(shí)有種,第四位為女生時(shí)種,綜上,第二位為男生的方法總數(shù)為;②若第二位為女生:第三位必為男生,則第四位為男生時(shí)有種,第四位為女生時(shí)種,綜上,第二位為女生的方法總數(shù)為;根據(jù)分類分步計(jì)數(shù)原理可得總方法數(shù)為種不同的排法.故答案為:.11..【分析】設(shè),,可得圓的半徑m,利用基本不等式運(yùn)算求解即可.【詳解】如圖,在矩形中,設(shè),,,則,圓的半徑m,因?yàn)?,,即,?dāng)且僅當(dāng)時(shí),等號(hào)成立,可得,即,解得,所以矩形花園占地面積的最小值為.故答案為:.12.【分析】過(guò)作于,連接,利用余弦定理與勾股定理可證得,結(jié)合線面垂直判定定理得平面,則用等體積法即可得此三棱錐的體積.【詳解】如下圖:過(guò)作于,連接,

因?yàn)椋?,,在中,由余弦定理得:,則,于是,故,又平面,所以平面,故此三棱錐的體積為.故答案為:.13.B【分析】通過(guò)特例說(shuō)明不能推出,,共面,即充分性不成立;再由平面幾何知識(shí)得出同一平面內(nèi)的直線不平行必相交,推出一定成立,即必要條件成立,兩者綜合即可得出結(jié)果.【詳解】如圖所示:滿足,,且,但是,所以可知是,,共面的不充分條件;當(dāng),,共面時(shí),由平面幾何知識(shí)可知同一平面內(nèi)的直線不平行必相交,又因?yàn)椋?,所以必然有,即是,,共面的必要條件,綜上可知是,,共面的必要不充分條件.故選:B.14.C【分析】先確定函數(shù)的單調(diào)性,再對(duì)所給函數(shù)進(jìn)行判斷即可.【詳解】因?yàn)?,?duì)任意的、時(shí),均有,所以函數(shù)在上單調(diào)遞增.對(duì)A:因?yàn)?,所以冪函?shù)在上單調(diào)遞減,不合題意;對(duì)B:因?yàn)楹瘮?shù)的圖象是開(kāi)口向上的拋物線,對(duì)稱軸為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,不合題意;對(duì)C:因?yàn)椋灾笖?shù)函數(shù)在上單調(diào)遞增,在上就是單調(diào)遞增,符合題意;對(duì)D:因?yàn)?,所以?duì)數(shù)函數(shù)在上單調(diào)遞減,不合題意.故選:C15.B【分析】由題意可求得,將函數(shù)寫成分段函數(shù),得出其值域?yàn)?,作出兩函?shù)的圖象,將原方程解的個(gè)數(shù)轉(zhuǎn)化為兩函數(shù)圖象交點(diǎn)的個(gè)數(shù)即可.【詳解】因?yàn)閷?duì)任意,都有,令,則有,解得,從而得;令,則有,所以,即,所以對(duì)任意恒成立,所以,所以,所以當(dāng)時(shí),,又因?yàn)?,所以?dāng)時(shí),方程無(wú)解;所以,所以的值域?yàn)?,?dāng)時(shí),,此時(shí)方程無(wú)解;作出和的部分圖象,如圖所示:當(dāng)時(shí),令,解得或,此時(shí)方程有2個(gè)解.由此可得兩函數(shù)圖象有7個(gè)交點(diǎn),即方程有7個(gè)解.故選:B.16.B【分析】根據(jù)“直徑”的定義,找出“直徑”與三角形邊長(zhǎng)之間的關(guān)系,分別對(duì)兩個(gè)結(jié)論進(jìn)行分析判斷即可.【詳解】結(jié)論①:,BC邊上的高等于,.在中,,又,所以,即,解得,因此,.當(dāng)封閉區(qū)域內(nèi)兩點(diǎn)位于在同一半圓上時(shí),以在上任取兩點(diǎn),為例,連接,則,又,所以,當(dāng)封閉區(qū)域內(nèi)兩點(diǎn)位于在不同半圓上時(shí),以在上取一點(diǎn),在上取一點(diǎn)為例,設(shè),的中點(diǎn)分別為,,連接,,,,由兩點(diǎn)間線段最短可得,當(dāng)且僅當(dāng),,,四點(diǎn)共線時(shí)取等號(hào),綜上,,所以,故結(jié)論①正確.結(jié)論②:設(shè)中角,,所對(duì)的邊長(zhǎng)分別為,,,設(shè)邊上的高為,即,.由三角形面積公式可得,所以,由余弦定理可得,即,所以.,即,當(dāng)且僅當(dāng)時(shí)取等號(hào).由①知,將,代入可得,當(dāng)且僅當(dāng),,,四點(diǎn)共線,時(shí)取等號(hào),所以,故結(jié)論②正確.故選:B17.(1);(2).【分析】(1)根據(jù)正弦函數(shù)的性質(zhì),結(jié)合已知條件求出、、的值,進(jìn)而得到函數(shù)的表達(dá)式;(2)先根據(jù)函數(shù)表達(dá)式求出和的值,再利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而得到,最后根據(jù)等比數(shù)列的前項(xiàng)和公式求出.【詳解】(1)由題意,函數(shù)(、,)的周期為,所以,即,解得,又函數(shù)在時(shí)取到最大值,所以,解得,,又,所以當(dāng)時(shí),,所以函數(shù)的表達(dá)式為;(2)由(1)知,函數(shù)的表達(dá)式為,所以,,又?jǐn)?shù)列為等差數(shù)列,則,解得,,所以,又,所以,即數(shù)列為首項(xiàng)是,公比為的等比數(shù)列,所以數(shù)列的前項(xiàng)和.18.(1)證明見(jiàn)解析(2)【分析】(1)建立空間直角坐標(biāo)系,利用空間向量證明線線垂直.(2)利用空間向量求點(diǎn)到平面的距離.【詳解】(1)取中點(diǎn),中點(diǎn),連接,.因?yàn)闉榈冗吶切?,所以,又平面平面,平面平面,平面,所以平?平面,所以,又底面是直角梯形,,所以.又分別為,中點(diǎn),所以,所以.所以兩兩垂直.故以為原點(diǎn),建立如圖空間直角坐標(biāo)系,因?yàn)椋?,,?所以,.因?yàn)?所以,所以.(2)由(1)得,,,.設(shè)平面的一個(gè)法向量為,則,令,可得.所以點(diǎn)到平面的距離為:.19.(1),(2)(3)一局定勝負(fù)對(duì)甲更有利【分析】(1)根據(jù)極差和中位數(shù)的計(jì)算公式即可求解;(2)根據(jù)古典概型的概率的計(jì)算公式結(jié)合組合數(shù)公式即可求解;(3)分別計(jì)算一局定輸贏和三局兩勝情況下甲獲勝的概率,比較大小.【詳解】(1)將題中數(shù)據(jù)按從小到大的排序排列得:3.2,4.1,4.7,5.3,5.8,6.5,7.2,8.9,9.6,12.4.故極差為;中位數(shù)為.(2)因?yàn)殚L(zhǎng)發(fā)球回合數(shù),短發(fā)球回合數(shù),所以從10個(gè)中隨機(jī)抽取3個(gè),至少有2個(gè)是長(zhǎng)發(fā)球回合的概率為:;(3)對(duì)于甲來(lái)說(shuō),一局定勝負(fù)的情況下,贏得比賽的概率為,三局兩勝的情況下,贏得比賽的概率為,則,因?yàn)?,所以,即,所以一局定勝?fù)對(duì)甲更有利.20.(1)(2)(3)【分析】(1)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),由橢圓性質(zhì)得,結(jié)合題意得到,即可求出離心率;(2)若,結(jié)合(1)得到和橢圓的方程,設(shè)點(diǎn),線段的中點(diǎn),列方程組計(jì)算得到點(diǎn),再根據(jù)直線的斜率公式計(jì)算即可.(3)根據(jù)題意,設(shè)出橢圓方程和直線方程,兩方程聯(lián)立,消參,利用韋達(dá)定理,得到和,利用三角形相似得到所求的比例值,最后求范圍.【詳解】(1)設(shè),則根據(jù)橢圓性質(zhì)得,而,所以有,即,因此橢圓的離心率為.(2)若,因?yàn)?,所以,且,以原點(diǎn)為圓心,為半徑的圓的方程為,設(shè)點(diǎn),線段的中點(diǎn),則,消化簡(jiǎn)可得,解得或,因?yàn)椋?,?jì)算得,點(diǎn),所以直線的斜率為;(3)由(1)可知,,橢圓的方程為.根據(jù)條件直線的斜率一定存在且不為零,設(shè)直線的方程為,并設(shè)則由消去并整理得從而有,所以.因?yàn)?,所以?由與相似,所以令,則,從而,即的取值范圍是.21.(1)函數(shù)在區(qū)間上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論