版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省云龍縣第二中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過(guò)雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.2.在拋物線上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,則p的值為()A. B.2C.1 D.43.已知曲線,下列命題錯(cuò)誤的是()A.若,則是橢圓,其焦點(diǎn)在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點(diǎn),,為曲線的兩個(gè)焦點(diǎn),則4.已知雙曲線的左、右焦點(diǎn)分別為,,P為雙曲線C上一點(diǎn),,直線與y軸交于點(diǎn)Q,若,則雙曲線C的漸近線方程為()A. B.C. D.5.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長(zhǎng)為2,則雙曲線C的方程為()A. B.C. D.6.已知各項(xiàng)均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項(xiàng)和為,且,則()A. B.C. D.7.已知橢圓C:的一個(gè)焦點(diǎn)為(0,-2),則k的值為()A.5 B.3C.9 D.258.已知直線:和直線:,拋物線上一動(dòng)點(diǎn)P到直線和直線的距離之和的最小值是()A. B.C. D.9.某班對(duì)期中成績(jī)進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將60個(gè)同學(xué)的成績(jī)按01,02,03,……,60進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第9行第5列的數(shù)1開(kāi)始向右讀,則選出的第6個(gè)個(gè)體是()(注:如下為隨機(jī)數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.5210.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或12.下列說(shuō)法正確的個(gè)數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_(kāi)________________14.在空間直角坐標(biāo)系O-xyz中,平面OAB的一個(gè)法向量為=(2,-2,1),已知點(diǎn)P(-1,3,2),則點(diǎn)P到平面OAB的距離d等于__________________15.已知點(diǎn),圓:.若過(guò)點(diǎn)的圓的切線只有一條,求這條切線方程____________.16.如圖,棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對(duì)角線上一個(gè)動(dòng)點(diǎn),則三棱錐的外接球表面積的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)的值18.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G的方程;(2)過(guò)橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.19.(12分)已知等差數(shù)列的前項(xiàng)的和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),記數(shù)列的前項(xiàng)和,求使得恒成立時(shí)的最小正整數(shù).20.(12分)正四棱柱的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4.E為棱上的動(dòng)點(diǎn),F(xiàn)為棱的中點(diǎn).(1)證明:;(2)若E為棱上的中點(diǎn),求直線BE到平面的距離.21.(12分)在中,角、、C所對(duì)的邊分別為、、,,.(1)若,求的值;(2)若的面積,求,的值.22.(10分)已知函數(shù)(1)求函數(shù)單調(diào)區(qū)間;(2)函數(shù)在區(qū)間上的最小值小于零,求a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長(zhǎng)相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:A.2、B【解析】由方程可得拋物線的焦點(diǎn)和準(zhǔn)線,進(jìn)而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開(kāi)口向右,焦點(diǎn)坐標(biāo),,準(zhǔn)線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點(diǎn)到準(zhǔn)線的距離等于5,即,解之可得.故選:B.3、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點(diǎn)在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點(diǎn)在軸上,由雙曲線的定義可知,,故D錯(cuò)誤;故選:D4、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進(jìn)而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點(diǎn),∴,又,為的中點(diǎn),∴,即,∴雙曲線C的漸近線方程為.故選:B.5、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D6、C【解析】先根據(jù),,成等差數(shù)列以及單調(diào)遞減,求出公比,再由即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式以及前項(xiàng)和公式即可求出.【詳解】解:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項(xiàng)公式為:,.故選:C7、A【解析】由題意可得焦點(diǎn)在軸上,由,可得k的值.【詳解】∵橢圓的一個(gè)焦點(diǎn)是,∴,∴,故選:A8、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點(diǎn)P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,再結(jié)合點(diǎn)到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點(diǎn)為,∴點(diǎn)P到準(zhǔn)線的距離PA等于點(diǎn)P到焦點(diǎn)F的距離PF,即,∴點(diǎn)P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,∵,∴,∴點(diǎn)P到直線和直線的距離之和的最小值為故選:A9、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號(hào)的數(shù)刪除.【詳解】根據(jù)題意,從隨機(jī)數(shù)表第9行第5列的數(shù)1開(kāi)始向右讀,依次選出的號(hào)碼數(shù)是:12,34,29,56,07,52;所以第6個(gè)個(gè)體是52.故選:D.10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.12、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(ⅰ)(ⅳ)的正誤,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知設(shè)出,,,分別在中和在中運(yùn)用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運(yùn)用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過(guò)正方體的外接球的直徑等于正方體的體對(duì)角線的長(zhǎng)求出球的半徑,再求出球的體積.【詳解】在中,設(shè),,,,,因?yàn)辄c(diǎn),點(diǎn)分別是,的中點(diǎn),所以,,在中,,在中,,整理得,因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,又因?yàn)?,所以,由,解得,所以又因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,所以,所以,,兩兩垂直,則球?yàn)橐詾槔獾恼襟w的外接球,則外接球直徑為,所以球的體積為,故答案為.【點(diǎn)睛】本題主要考查空間幾何體的外接球的體積,破解關(guān)鍵在于熟悉正三棱錐的結(jié)構(gòu)特征,運(yùn)用解三角形的正弦定理和余弦定理得出三棱錐的棱的關(guān)系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對(duì)角線的長(zhǎng)求解更方便快捷,屬于中檔題14、2【解析】O是平面OAB上一個(gè)點(diǎn),設(shè)點(diǎn)P到平面OAB的距離為d,則d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即點(diǎn)P到平面OAB的距離為2考點(diǎn):空間向量在立體幾何中的運(yùn)用15、或【解析】由題設(shè)知A在圓上,代入圓的方程求出參數(shù)a,結(jié)合切線的性質(zhì)及點(diǎn)斜式求切線方程.【詳解】因?yàn)檫^(guò)的圓的切線只有一條,則在圓上,所以,則,且切線斜率,即,所以切線方程或,整理得或.故答案為:或.16、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時(shí),,為最小值,外接球表面積最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問(wèn)1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問(wèn)2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.19、(1)(2)1【解析】(1)先設(shè)設(shè)等差數(shù)列的公差為,由,列出方程組求出首項(xiàng)和公差即可;(2)由(1)先求出,再由裂項(xiàng)相消法求數(shù)列的前項(xiàng)和即可.【詳解】解:(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,所以解得所以?shù)列的通項(xiàng)公式為.(2)由(1)可知∴,∴,∴,∴的最小正整數(shù)為1【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消法求數(shù)列前項(xiàng)和的問(wèn)題,熟記公式即可,屬于基礎(chǔ)題型.20、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)給定條件建立空間直角坐標(biāo)系,利用空間位置關(guān)系的向量證明計(jì)算作答.(2)利用(1)中坐標(biāo)系,證明平面,再求點(diǎn)B到平面的距離即可作答.【小問(wèn)1詳解】在正四棱柱中,以點(diǎn)D為原點(diǎn),射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,則,因E為棱上的動(dòng)點(diǎn),則設(shè),,而,,即,所以.【小問(wèn)2詳解】由(1)知,點(diǎn),,,,設(shè)平面的一個(gè)法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點(diǎn)B到平面的距離,所以直線BE到平面的距離是.21、(1)(2),【解析】(1)根據(jù)同角三角函數(shù)的基本關(guān)系求解的值,再結(jié)合正弦定理求解即可;(2)根據(jù)三角形的面積可求解出邊c的值,再運(yùn)用余弦定理求解邊b.【詳解】(1),且,.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西賀州市富川瑤族自治縣自然資源局招聘2人模擬筆試試題及答案解析
- 2026昆玉職業(yè)技術(shù)學(xué)院引進(jìn)高層次人才(28人)參考考試試題及答案解析
- 2025漳州城投地產(chǎn)集團(tuán)有限公司市場(chǎng)化用工人員招聘模擬筆試試題及答案解析
- 深度解析(2026)《GBT 26492.3-2011變形鋁及鋁合金鑄錠及加工產(chǎn)品缺陷 第3部分:板、帶缺陷》
- 深度解析(2026)《GBT 26056-2010真空熱壓鈹材》(2026年)深度解析
- 2026年寧波鎮(zhèn)海中學(xué)嵊州分校招聘事業(yè)編制教師2人考試備考題庫(kù)及答案解析
- 深度解析(2026)《GBT 25749.1-2010機(jī)械安全 空氣傳播的有害物質(zhì)排放的評(píng)估 第1部分:試驗(yàn)方法的選擇》(2026年)深度解析
- 2025泰安新泰市泰山電力學(xué)校教師招聘參考筆試題庫(kù)附答案解析
- 2025山東鋁業(yè)有限公司面向中鋁股份內(nèi)部招聘考試備考題庫(kù)及答案解析
- 2026福建三明市建寧縣公開(kāi)招聘緊缺急需專業(yè)教師19人備考考試試題及答案解析
- 拖拉機(jī)運(yùn)輸協(xié)議合同范本
- 遼寧省安全生產(chǎn)條例講解
- 營(yíng)業(yè)執(zhí)照管理辦法公司
- 如何開(kāi)展護(hù)理科研
- 深圳市坪山區(qū)高標(biāo)準(zhǔn)農(nóng)田建設(shè)規(guī)劃(2021-2030年)(草案以及編輯說(shuō)明)
- 口腔門(mén)診護(hù)士溝通技巧
- 新工廠工作匯報(bào)
- 生產(chǎn)插單管理辦法
- DB64T 2146-2025 工礦企業(yè)全員安全生產(chǎn)責(zé)任制建設(shè)指南
- 山東動(dòng)物殯葬管理辦法
- 汽車電子工程師崗位面試問(wèn)題及答案
評(píng)論
0/150
提交評(píng)論