版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省忻州市一中2026屆高二上數(shù)學期末經典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則最小值是()A.10 B.9C.8 D.72.攢(cuán)尖是我國古代建筑中屋頂?shù)囊环N結構樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.3.設函數(shù),若為奇函數(shù),則曲線在點處的切線方程為()A. B.C. D.4.命題“,”的否定是A, B.,C., D.,5.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.6.函數(shù)的圖象在點處的切線的傾斜角為()A. B.0C. D.17.函數(shù)在處有極小值5,則()A. B.C.或 D.或38.已知圓的方程為,則實數(shù)m的取值范圍是()A. B.C. D.9.2021年是中國共產黨百年華誕,3月24日,中宣部發(fā)布中國共產黨成立100周年慶?;顒訕俗R(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.10.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.411.在三棱錐中,,D為上的點,且,則()A. B.C. D.12.已知直線,當變化時,所有直線都恒過點()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.14.已知直線在兩坐標軸上的截距分別為,,則__________.15.已知曲線與曲線有相同的切線,則________16.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列,,,為其前n項和,且滿足.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和18.(12分)已知橢圓的左、右焦點分別為,,橢圓上一點滿足,且的面積為(1)求橢圓的方程;(2)直線與橢圓有且只有一個公共點,過點作直線的垂線.設直線交軸于,交軸于,且點,求的軌跡方程19.(12分)如圖,在四棱錐中,底面是菱形,平面,,,分別為,的中點(1)證明:平面;(2)證明:平面20.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應弦長最短時的直線方程21.(12分)正四棱柱的底面邊長為2,側棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.22.(10分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用題設中的等式,把的表達式轉化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當且僅當,即時等號成立故選:B2、B【解析】由軸截面三角形,根據已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側面積.故選:B3、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導數(shù),根據導數(shù)的幾何意義,利用點斜式即可求出結果【詳解】函數(shù)的定義域為,若為奇函數(shù),則則,即,所以,所以函數(shù),可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C4、C【解析】特稱命題的否定是全稱命題,并將結論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題5、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題6、A【解析】求出導函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設傾斜角為,則,,故選:A7、A【解析】由題意條件和,可建立一個關于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當,時,.由,得;由,得.則在上單調遞增,在上單調遞減,故在處有極大值5,不符合題意.當,時,.由,得;由,得.則在上單調遞減,在上單調遞增,故在處有極小值5,符合題意,從而故選:A.8、C【解析】根據可求得結果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關鍵點點睛:掌握方程表示圓的條件是解題關鍵.9、C【解析】作出圖形,進而根據勾股定理并結合圓與圓的位置關系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.10、A【解析】根據等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據等比數(shù)列的通項得:,,故選:A.11、B【解析】根據幾何關系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B12、D【解析】將直線方程整理為,從而可得直線所過的定點.【詳解】可化為,∴直線過定點,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設異面直線與所成角為,,異面直線與所成角為.故答案為:.14、##【解析】根據截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:15、0【解析】設切點分別為,.利用導數(shù)的幾何意義可得,則.由,,計算可得,進而求得點坐標代入方程即可求得結果.【詳解】設切點分別為,由題意可得,則,即因為,,所以,即,解得,所以,則,解得故答案為:016、38【解析】根據數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)按照所給條件,先算出的表達式,再按照與的關系計算,;(2)裂項相消求和即可.【小問1詳解】由題可知數(shù)列是等差數(shù)列,所以,,又因為,所以;【小問2詳解】所以;故答案為:,.18、(1);(2).【解析】(1)利用可得,由橢圓關系可求得,進而得到橢圓方程;(2)將與橢圓方程聯(lián)立可得,得,結合韋達定理可確定點坐標,由此可得方程,進而得到,化簡整理即可得到所求軌跡方程.【小問1詳解】由焦點坐標可知:;,即,,,解得:,,解得:(舍)或,,橢圓的方程為:;【小問2詳解】由得:,,整理可得:;,解得:,,則,令,解得:;令,解得:;,即,又,,則的軌跡方程為:.【點睛】思路點睛:本題考查動點軌跡方程的求解問題,解題基本思路是能夠利用變量表示出所求點的坐標,根據坐標之間關系,化簡整理消掉變量得到所求軌跡方程;易錯點是忽略題目中的限制條件,軌跡中出現(xiàn)多余的點.19、(1)證明見解析;(2)證明見解析.【解析】(1)取中點,結合三角形中位線性質可證得四邊形為平行四邊形,由此得到,由線面平行判定定理可證得結論;(2)利用菱形特點和線面垂直的性質可證得,,由線面垂直的判定定理可證得結論.【詳解】(1)取中點,連接,分別為中點,,四邊形為菱形,為中點,,,四邊形為平行四邊形,,又平面,平面,平面.(2)連接,四邊形為菱形,,為等邊三角形,又為中點,,平面,平面,,又平面,,平面.20、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經過定點,圓可變形為,因為,所以定點在圓內,所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當且僅當時,d的最大值為,所以最短弦長為,直線的方程為.21、(1)證明見解析;(2).【解析】(1)根據給定條件建立空間直角坐標系,利用空間位置關系的向量證明計算作答.(2)利用(1)中坐標系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,因E為棱上的動點,則設,,而,,即,所以.【小問2詳解】由(1)知,點,,,,設平面的一個法向量,則,令,得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 真菌性肺炎的早期診斷與治療策略-2
- 目標導向液體治療的個體化方案
- 皮膚科病理診斷與臨床信息對接要點
- 皮膚科MUP重癥患者的多學科告知
- 白癜風聯(lián)合治療的個體化方案調整-2
- 登革熱疫苗的聯(lián)合接種策略與安全性
- 癲癇持續(xù)狀態(tài)電解質紊亂的糾正
- 癲癇外科質量控制與安全管理
- 癡呆篩查與慢病管理的整合策略
- 病理設備采購的質量控制與周期
- 騎車誤傷協(xié)議書
- 孔源性視網膜脫離護理查房
- 《中級財務會計》課件-11收入、費用和利潤
- 新生兒肺炎的治療與護理
- 電纜局部放電試驗報告模板
- 東莞初三上冊期末數(shù)學試卷
- 人員技能矩陣管理制度
- T/CECS 10220-2022便攜式丁烷氣灶及氣瓶
- 空調售后外包協(xié)議書
- 光伏防火培訓課件
- 電視節(jié)目編導與制作(全套課件147P)
評論
0/150
提交評論