版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
嚴(yán)選題·1.函數(shù)、極限、連續(xù)xxxx3.設(shè)有數(shù)列{xn}與{yn},以下結(jié)論正確的是()(A)若xnyn=0,則必有x(B)若xnyn=∞,則必有xn=∞或yn=∞.(C)若xnyn有界,則必有xn與yn都有界。(D)若xnyn無(wú)界,則必有xn無(wú)界或yn無(wú)界。4.設(shè)xnyn=∞,則下列結(jié)論錯(cuò)誤的是()(A)xn=∞與yn=∞至少有一個(gè)成立。n(D)若xn=a≠∞,則{yn}必為無(wú)窮大量?!褽Q\*jc3\*hps14\o\al(\s\up9(x),0)f(t2)dt.(B)∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f2(t)dt.(C)∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)tf(t)-f(-t)dt.(D)∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)tf(t)+f(-t)dt.n→∞n→∞n→∞n→∞n→∞n→∞n→∞n→∞,x→0xx→0x,x→0xx→0x,12.已知當(dāng)x→0時(shí),函數(shù)f(x)=3sinx-sin3x13.當(dāng)x→0+時(shí),下列無(wú)窮小量中最高階的無(wú)窮小量是()x在17.已知函數(shù)f在(-∞,+∞)上有一個(gè)可去間斷點(diǎn)和一個(gè)跳躍間斷點(diǎn),則()18.設(shè)f,則f(x)(),23.設(shè)n為正整數(shù),則x=______25.設(shè)xn,則EQ\*jc3\*hps21\o\al(\s\up1(l),n)xn=________.27.確定常數(shù)a,b,使x→0時(shí)f(x)=ex-為x的三階無(wú)窮小。28.當(dāng)x→0時(shí),1?cosx.cos2x.cos3x與a,(1)n2(π2)n→∞(n,n→∞(4(1)n2(π2)n→∞(n,n→∞(4n, 37.已知函數(shù)f(x)在x=0的某鄰域內(nèi)可導(dǎo),且,試求fxx→0fxx→0f(x)+ex41.求函數(shù)f(x的間斷點(diǎn)并指出類型。嚴(yán)選題·1.函數(shù)、極限、連續(xù)43.設(shè)f(x)是區(qū)間[0,+∞)上單調(diào)減少且非負(fù)的連續(xù)函數(shù),andx(n=1,2,嚴(yán)選題·1.函數(shù)、極限、連續(xù)44.設(shè)x1...,xn+1...,n=1,2,,證明數(shù)列{xn}收斂并求它的極限。,46.設(shè)函數(shù)f=lnx.n}收斂并求極限xn;48.設(shè)f(x)在[0,2a](a>0)上連續(xù),且f(0)=f(2a)求證存在ξ∈[0,a],使f(ξ)=f(ξ+a).使f(ξ)=t1f(x1)+t2f(x2嚴(yán)選題·2.一元函數(shù)微分學(xué)3.設(shè)函數(shù)y=f(x)在點(diǎn)x=0,4.若f(x)在點(diǎn)x0處的左、右導(dǎo)數(shù)都存在,則f(x)在點(diǎn)x0處()15.已知f(x)在x=0處連續(xù),且EQ\*jc3\*hps21\o\al(\s\up0(l),x)f(x)+exx=2,則f,(0)()6.設(shè)f(x)有連續(xù)一階導(dǎo)數(shù),f(0)=0,若當(dāng)x→0時(shí),dt與4x2為等價(jià)無(wú)窮小,7.函數(shù)f(x)=x?x2(ex?1)+sinx?2不可導(dǎo)點(diǎn)的個(gè)數(shù)為()n→∞n→∞,,,③f(x)在x=0處取得極小值。④f(x)在x=10.設(shè)函數(shù)f(x)在(?∞,+∞)內(nèi)連續(xù),11.設(shè)函數(shù)f(x)=x2(x+1)的駐點(diǎn)個(gè)數(shù)為m,極值點(diǎn)的個(gè)數(shù)為n,則(),(C)(0,f(0))是曲線y=f((D)f(0)不是f(x)的極值,(0,f(0))也不是曲線y=f(x)的拐點(diǎn)。14.設(shè)函數(shù)f(x)有二階連續(xù)導(dǎo)數(shù),,,(A)x=0是f(x)的極值點(diǎn),但(0,f(0))不是曲線y=f(x)的拐點(diǎn)。(B)x=0不是f(x)的極值點(diǎn),但(0,f(0))是曲線y=f(x)的拐點(diǎn)。(C)x=0是f(x)的極值點(diǎn),且(0,f(0))是曲線y=f(x)的拐點(diǎn)。(D)x=0不是f(x)的極值點(diǎn),且(0,f(0))不是曲線y=f(x)的拐點(diǎn)。(C)(0,f(0))是曲線y=f((D)f(0)不是f(x)的極值,(0,f(0))也不是曲線y=f(x)的拐點(diǎn)。18.設(shè)曲線y=f(x)與y=x2?x在點(diǎn)(1,0)處有公共切線,則limnfn→∞(n),22.設(shè)函數(shù)f(xy=f,則x=e23.設(shè)y=f(x)的反函數(shù)是x=φ(y),且f(x)=∫EQ\*jc3\*hps14\o\al(\s\up9(2),1)xet2dt+1,則φ,(1)=________.25.設(shè)f,則f(n)(x)=________.26.函數(shù)f(x)=ln(x?1)(x?2)(x?n)的駐點(diǎn)個(gè)數(shù)為_(kāi)_______.27.已知方程x4+2x3?3x2?4x+a=0有兩個(gè)重根,則a=28.已知方程3x4?8x3?6x2+24x+a=0有四個(gè)不相同的實(shí)根,則a的取值范圍為_(kāi)_______.29.設(shè)f(x)為連續(xù)函數(shù),dt,當(dāng)x→0時(shí)Fx2與bxk為等價(jià)無(wú)窮小,其中常數(shù)b≠0,k為某正整數(shù)。求k與b的值及30.已知函數(shù)f(u)具有二階導(dǎo)數(shù),且f,(0)=1函數(shù)y=y(x)由方程y?xey?1=1所確定。設(shè)z=f(lny?sinx)求.,EQ\*jc3\*hps21\o\al(\s\up7(y),x)EQ\*jc3\*hps21\o\al(\s\up7(t),f)33.設(shè)函數(shù)φ(x)=∫EQ\*jc3\*hps14\o\al(\s\up9(s),0)inxf(tx2)dt,其中f(x)是連續(xù)函數(shù),且f(0)=2.,35.設(shè)函數(shù)由方程2y3?2y2+2xy?x2=1所確定,試求y=y(x)的駐點(diǎn),并判別它是否為極值(2)過(guò)點(diǎn)(?1,0)引L的切線,,(3)求此切線與L(對(duì)應(yīng)于x≤x0的部分)及x軸所圍成的平面圖形的面積。37.試確定方程x3-x=sinx的實(shí)根個(gè)數(shù)。38.試確定方程∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)e-t2dt=x3-x的實(shí)根個(gè)數(shù)。39.試確定方程ex=ax2(a>0)的實(shí)根個(gè)數(shù)。41.試證:當(dāng)x≥0時(shí),x≤exln(1+x).第90頁(yè),共407頁(yè),第91頁(yè),共407頁(yè)第92頁(yè),共407頁(yè)第93頁(yè),共407頁(yè),證至少存在一點(diǎn)ξ∈(0,1),使f,(ξ)+g,(ξ)f(ξ)?ξ=1.第94頁(yè),共407頁(yè)46.設(shè)f(x),g(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且dxdx,試證存在ξ,η∈(0,1),使得f,=g.第95頁(yè),共407頁(yè)47.設(shè)f(x)在[?2,2]上二階可導(dǎo),且f(x)≤1又證明在(?2,2)第96頁(yè),共407頁(yè)48.設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且f,(x)>0.若極限存在,證明:第97頁(yè),共407頁(yè),b2?a2=EQ\*jc3\*hps14\o\al(\s\up9(b),a)f(x)dx.第98頁(yè),共407頁(yè)第99頁(yè),共407頁(yè)存在,使得f,(ξ)+f,(η)=ξ2+η2.51.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1).試證存在ξ和η.滿足0<ξ<η<1使f,(ξ)+f,(η)=0.,,,,54.設(shè)f(x)在[0,2]上二階可導(dǎo),且lf(x)≤1,f,(x)≤1,證明:f,(x)≤2(0≤x≤2).嚴(yán)選題·3.一元函數(shù)積分學(xué))(A)f(x)與g(x)都存在原函數(shù)。(B)f(x)與g(x)都不存在原函數(shù)。(C)f(x)存在原函數(shù),g(x)不存在原函數(shù)。(D)f(x)不存在原函數(shù),g(x)存在原函數(shù)。3.已知f(x設(shè)Fdt,則F(x)為()x<1,lx?1,1≤x≤2lx?1,1≤x≤2.4.設(shè)f(xx2e則Fdt在x=0處()5.設(shè)在區(qū)間[a,b]上f(x)>0,f,(x)<0,f,(x)>0.令Sdx,S2=f,,S2<S3<S1.6.設(shè)f(x)連續(xù),則dt=x2x2.(C)2xfx2x2.7.設(shè)f(x)連續(xù),且存在常數(shù)a,滿足5xdt.當(dāng)x→0時(shí),axf(x)與c(tanx?x)k是等價(jià)10.設(shè)Isindx,Icosdx,則()11.設(shè)Ilnsinxdx,Jlncotxdx,Klncosxdx.則I,J,K的大小關(guān)系為()(A)I<J<K.(B)I<K<J.(C)J<I<K.(D)K<J<I.EQ\*jc3\*hps14\o\al(\s\up9(k),0),17.設(shè)f(x)是連續(xù)函數(shù),且∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)3?1f(t)dt=x?1,則f(7)=_________.18.設(shè)f(x)是連續(xù)函數(shù),且f(x)=x+2∫EQ\*jc3\*hps14\o\al(\s\up9(1),0)f(t)dt,則f(x)=_________.24.設(shè)f(x)=x?∫EQ\*jc3\*hps14\o\al(\s\up9(π),0)f(x)cosxdx,則f(x)=_________.25.設(shè)f(x)為連續(xù)函數(shù),且∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(t)dt=3x3?x1f(t)dt,則f(x)=_________.EQ\*jc3\*hps20\o\al(\s\up0(l),n)2228.EQ\*jc3\*hps21\o\al(\s\up1(l),n)EQ\*jc3\*hps14\o\al(\s\up9(1),0)e?xsinnxdx=_________.29.設(shè)函數(shù)f(x)連續(xù),且∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(t?x)dt=(1+x2)x?1,則1f(x)dx=_________.30.若dt=xe?x,則dx=_________.31.∫EQ\*jc3\*hps13\o\al(\s\up12(+),2)∞=_________.32.函數(shù)y在區(qū)間上的平均值為_(kāi)________.33.由曲線y=x+,x=2及y=2所圍圖形軸所圍成的圖形的面積為_(kāi)________.π)4,35.(數(shù)學(xué)三不要求)曲線y=∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)tantdt0≤x≤π)4,的弧長(zhǎng)s=36.(數(shù)學(xué)三不要求)一根長(zhǎng)為1的細(xì)棒位于x軸的區(qū)間[0,1]上,若其線密度p=?x2+2x+1則該細(xì)37.計(jì)算dx,其中fdt.x→0x(1-cosx).40.設(shè)f(x)為非負(fù)連續(xù)函數(shù),且f(x)∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(x-t)dt=sin4x,求f(x)在0,EQ\*jc3\*hps21\o\al(\s\up6(7),」)|上的平均值。41.設(shè)f(x)在x=a的某鄰域內(nèi)可導(dǎo),且f(a)≠0,求極限42.函數(shù)f(x)在[0,+∞)上可導(dǎo),f(0)=0,且其反函數(shù)為g(x)若∫EQ\*jc3\*hps14\o\al(\s\up8(x),x)+f(x)g(t-x)dt=x2ln(1+x),求f(x).43.設(shè)函數(shù)Scostdt,(1)當(dāng)n為正整數(shù),且nπ≤x<(n+1)π時(shí),證明2n≤S(x)<2(n+1);nlntndt(n=1,2,求極限EQ\*jc3\*hps21\o\al(\s\up0(l),n)un.45.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且滿足f=kxe1-xfdx.證明至少存在一點(diǎn)ξ∈(0,1)使得f46.設(shè)函數(shù)f(x)在[0,3]上連續(xù),在(0,3)內(nèi)存在二階導(dǎo)數(shù),且2fdx=f+f,47.設(shè)f(x)在[0,a](a>0)上連續(xù),且∫EQ\*jc3\*hps14\o\al(\s\up9(a),0)f(x)dx=0.試證存在ξ∈(0,a)使得f(a-ξ)=-f(ξ).t)dt=(1-ξ)f(ξ);若又設(shè)f(x)>0且單調(diào)減少,則這種ξ是唯一的。,0[x(2)又設(shè)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),且f,證明(1)中的x0是唯一的。x→0+52.設(shè)f(x)在[0,2π]上具有二階連續(xù)導(dǎo)數(shù),且f,(x)≥0,證明:∫EQ\*jc3\*hps14\o\al(\s\up9(2),0)πf(x)cosxdx≥0.53.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f,(x)<M,證明dx54.設(shè)f(x)滿足f=1,f,,試證xf(x)存在且不超過(guò)1+(x2+y2=2yy≥)與x2+y2=1y≤),連接而成。(速度為gm/s2,水的密度為103kg/m3).(坐標(biāo)。57.求曲線y=3?x2?1與x軸圍成的封閉圖形繞直線y=3旋轉(zhuǎn)所得的旋轉(zhuǎn)體體積。58.設(shè)有拋物線Γ:y=a?bx2(a>0,b>0),試確定常數(shù)a,b的值,使得(59.設(shè)曲線y與直線y=x及y=2所圍區(qū)域?yàn)镈,(1)求區(qū)域D分別繞x軸和y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積;60.求曲線y=x2與直線y=x所圍區(qū)域D繞直線y=x旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。嚴(yán)選題·4.常微分方程1.已知函數(shù)y=y(x)在任意點(diǎn)處的增量,且當(dāng)Δx→0,2.方程y,+2y,+y=3xe?x的特解形式為((A)Axe?x.(B)(Ax+B)e?x.(C)(Ax+B)xe?x.(D)(Ax+B)x2e?x.3.具有特解y1=e?x,y2=2xe?x,y3=3ex的三階常系數(shù)齊次線性微分方程是()(A)y’’’?y’’?y’+y=0.(B)y’’’+y’’?y’?y=0.(C)y’’’?6y’’+11y’?6y=0.(D)y’’’?2y’’?y’+2y=0.4.微分方程y,?4y,+8y=e2x(1+cos2x)的特解可設(shè)為y*=()(A)Ae2x+e2x(Bcos2x+Csin2x).(B)Axe2x+e2x(Bcos2x+Csin2x).(C)Ae2x+xe2x(Bcos2x+Csin2x).(D)Axe2x+xe2x(Bcos2x+Csin2x).5.函數(shù)y=C1ex+C2e?2x+xex滿足的一個(gè)微分方程是()(A)y’’?y’?2y=3xex.(B)y’’?y’?2y=3ex.(C)y’’+y’?2y=3xex.(D)y’’+y’?2y=3ex.6.在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3為任意常數(shù))為通解的是()7.微分方程y,?λ2y=eλx+e?λx(λ>0)的特解形式為()x8.方程xlnxdy+(y?lnx)dx=0滿足初始條件yx=c=1的特解為_(kāi)________.10.方程ydx+dy=0的通解為_(kāi)________.11.已知方程y+ay+by=0的通解為y=C1ex+C2e?x,則方程y+ay+by=ex滿足初始條件y=0,y的特解為_(kāi)______12.方程y’’+y=x+cosx的通解為_(kāi)________.13.設(shè)函數(shù)y(x)滿足y,+(x?1)y,+x2y=ex,且y,(0)=1.若EQ\*jc3\*hps21\o\al(\s\up2147483647(l),x)a,則a=_________.14.二階常系數(shù)非齊次線性微分方程y’’?4y’+3y=2e2x的通解為_(kāi)________.15.三階常系數(shù)線性齊次微分方程y’’’?2y’’+y’?2y=0的通解為_(kāi)________.16.僅數(shù)三要求)差分方程2yt+1+10yt?5t=0的通解為_(kāi)________.17.僅數(shù)三要求)差分方程yt+1?2yt=4(3+t)2t的通解為_(kāi)________.18.設(shè)函數(shù)y=y(x)滿足微分方程y,?3y,+2y=2ex,且其圖形在點(diǎn)(0,1)處的切線與曲線y=x2?x+1在該點(diǎn)的切線重合,求函數(shù)y=y(x).19.已知y1=3,y2=3+x2,y3=3+ex是某二階線性非齊次方程的三個(gè)特解,求該微分方程及通21.設(shè)函數(shù)f(x)具有連續(xù)的一階導(dǎo)數(shù),且滿足f(x)=∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)(x2?t2)f,(t)dt+x2.求f(x)的表達(dá)式。22.設(shè)f(x)連續(xù),且滿足∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(t)dt=x+∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)tf(x?t)dt,求f(x).23.設(shè)f(x)為連續(xù)函數(shù),且滿足f(x)=ex+ex∫EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(t)2dt.試求f(x).24.函數(shù)f(x)在[0,+∞)上可導(dǎo),f(0)=1,且滿足等式f,(x)+f(x)?EQ\*jc3\*hps14\o\al(\s\up9(x),0)f(t)dt=0(2)證明:當(dāng)x≥0時(shí),不等式e?x≤f(x)≤1成立。26.設(shè)f(x)在(?∞,+∞)上有定義,f,(0)=2,對(duì)任意的x,y有f(x+y)=exf(y)+eyf(x),求f(x).27.設(shè)f(x)在[1,+∞)上有連續(xù)二階導(dǎo)數(shù),f(1)=0,f,(1)=1且z=(x2+y2)f(x2+y2)滿足求f(x)在[1,+∞)上的最大值。28.設(shè)函數(shù)u(x,y)的全微分du=ex+f,(x)ydx+f(x)dy其中f具有二階連續(xù)的導(dǎo)數(shù),且f(0)=4,f,(0)=3求f(x)及u(x,y).29.求過(guò)原點(diǎn)的曲線y=y(x),使曲線上任一點(diǎn)P的法線段PQ(Q是過(guò)P點(diǎn)作曲線法線與x軸的交點(diǎn))的中點(diǎn)位于拋物線2y2=x上。30.設(shè)函數(shù)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)大于零,且滿足微分方程=fax2.曲線y=f(x)與直線x=1,y=0所圍成區(qū)域D的面積為2,求:(2)使D繞x軸旋轉(zhuǎn)一周而成旋轉(zhuǎn)體體積為最小的a.31.設(shè)曲線L位于xOy平面的第一象限內(nèi),L上任一點(diǎn)M處的切線與y軸總相交,交點(diǎn)(33)(22,,,(33)(22,32.(數(shù)學(xué)三不要求)在上半平面一條向下凸的曲線,其上任一點(diǎn)P(x,y)處的曲率等于此曲線在軸平行。33.設(shè)L是一條平面曲線,其上任意一點(diǎn)P(x,y)(x>0)到坐標(biāo)原點(diǎn)的距離,恒等于該點(diǎn)處的切(1)(2,線在y軸上的截距,且L(1)(2,34.設(shè)y=y(x)是區(qū)間(?π,π)內(nèi)過(guò)點(diǎn)的光滑曲線。當(dāng)?π<x<0時(shí),曲線上任一點(diǎn)處的法線都過(guò)原點(diǎn);當(dāng)0≤x<π時(shí),函數(shù)y(x)滿足y,+y+x=0.求函數(shù)y(x)的表達(dá)式。35.已知曲線L其中函數(shù)f(t)具有連續(xù)導(dǎo)數(shù),且f(0)=0,f,(t.若曲線L的切線與x軸的交點(diǎn)到切點(diǎn)的距離恒為1,求函數(shù)f(t)的表達(dá)式,并求以曲線L及x軸和y軸為邊界的區(qū)域的面積。36.在xOy坐標(biāo)平面上,連續(xù)曲線L過(guò)點(diǎn)M(1,0)其上任意點(diǎn)P(x,y)(x≠0)處的切線斜率與直線((1)求L的方程;(2)當(dāng)L與直線y=ax所圍成平面圖形的面積為時(shí),確定a的值。3嚴(yán)選題·5.多元函數(shù)微分學(xué),(0,0),fy'(0,0)都存在。(B)fx'(0,0)(0,0)存在,fy'(0,0)不存在。(D)fx'(0,0),fy'2.設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)處有fx'(x0,y0)=a,fy'(x0,y0)=b,則下列結(jié)論正確的是()(A)f(x,y)存在,但f(x,y)在(x0,y0)處不一定連續(xù)。y→y0(B)f(x,y)在(x0,y0)處連續(xù)。(x0,y0)(x0,y0)(D)f(x,y0)及f(x0,y)都存在且相等。4.設(shè)f(x,y則f(x,y)在(0,0)處()5.設(shè)函數(shù)f(x,y)可微,且對(duì)任意x,y都有,則使不等式f(x1,y1)<f(x2,y2)成立的一個(gè)充分條件是()x2,y1<y2.(B)x1>x2,y1>y2.x2,y1<y2.(D)x1<x2,y1>y2.第200頁(yè),共407頁(yè)6.設(shè)可微函數(shù)f(x,y)滿足?f>1,?f<?1,f(0,0)=0,則下列結(jié)論正確的是()第201頁(yè),共407頁(yè)7.設(shè)函數(shù)f(x,y)滿足?f<0,?f>1,則下列結(jié)論正確的是()第202頁(yè),共407頁(yè)第203頁(yè),共407頁(yè),(A)f(x,y)在(0,0)點(diǎn)可微。(B)fx'(0,0)=?2.(0,0)和fy'(0,0)都不一定存在。第204頁(yè),共407頁(yè),(A)1?xy+y2.(B)1+xy+y2.(C)1?x2y+y2.(D)1+x2y+y2.第205頁(yè),共407頁(yè),第206頁(yè),共407頁(yè)12.設(shè)函數(shù)z=f(x,y)的全微分為dz=xdx+ydy,則點(diǎn)(0,0)()第207頁(yè),共407頁(yè)13.設(shè)函數(shù)f(x)具有二階連續(xù)導(dǎo)數(shù),且f(x)>0,f,(0)=0,則函數(shù)z=f(x)lnf(y)在點(diǎn)(0,0)處取得極小值的一個(gè)充分條件是(),,,,第208頁(yè),共407頁(yè)14.設(shè)函數(shù)f(x),g(x)均有二階連續(xù)導(dǎo)數(shù),滿足f(0)>0,g(0)<0,且f,(0)=g,數(shù)z=f(x)g(y)在點(diǎn)(0,0)處取得極小值的一個(gè)充分條件是(),,,,第209頁(yè),共407頁(yè)15.設(shè)F(x,y)具有二階連續(xù)偏導(dǎo)數(shù),且F(x0,y0)=0,Fx'(x0,y0)=0,Fy'(x0,y0)>0.若一元函數(shù)y=y(x)是由方程F(x,y)=0所確定的在點(diǎn)(x0,y0)附近的隱函數(shù),則x0是函數(shù)y=y(x)的極小值點(diǎn))(x0,y0)>0.(B)Fx'x'(x0,第210頁(yè),共407頁(yè)16.設(shè)函數(shù)u(x,y)在有界閉區(qū)域D上連續(xù),在D的第211頁(yè),共407頁(yè),第212頁(yè),共407頁(yè)xy2,第213頁(yè),共407頁(yè),第214頁(yè),共407頁(yè)第215頁(yè),共407頁(yè)21.設(shè)函數(shù)z=z(x,y)由方程(z+y)x=xy確定,則第216頁(yè),共407頁(yè)22.設(shè)u=x2eyz3,其中z=z(x,y)由方程x3+y3+z3?3xyz=0所確定,則dux=?1,y=0=_________.第217頁(yè),共407頁(yè)23.設(shè)z=f(x,y)滿足=x+y,且f(x,0)=x,f(0,y)=y2,則f(x,y)=_________.第218頁(yè),共407頁(yè)24.設(shè)u(x,y)有連續(xù)二階偏導(dǎo)數(shù),且u(x,2x)=x,u1(x,2x)=x2,則uEQ\*jc3\*hps14\o\al(\s\up4(''),1)1(x,2x)=______.第219頁(yè),共407頁(yè)25.設(shè)函數(shù)z=z(x,y)由方程F確定,則x+y=_________.第220頁(yè),共407頁(yè)EQ\*jc3\*hps21\o\al(\s\up2147483645(l),t)嚴(yán)選題·5.多元函數(shù)微分學(xué)第221頁(yè),共407頁(yè)27.已知函數(shù)z=f(x,y)連續(xù)且滿足嚴(yán)選題·5.多元函數(shù)微分學(xué)第222頁(yè),共407頁(yè)28.設(shè)z=∫EQ\*jc3\*hps14\o\al(\s\up9(1),0)xy?tf(t)dt,0≤x≤1,0≤y≤1其中f(x)為連續(xù)函數(shù),則zEQ\*jc3\*hps14\o\al(\s\up5(''),x)x+zEQ\*jc3\*hps14\o\al(\s\up5(''),y)y=_________.第223頁(yè),共407頁(yè)29.設(shè)u=f(x,y,z),z=ln,求?u?2u,其中f有二階連續(xù)偏導(dǎo)數(shù)。第224頁(yè),共407頁(yè)30.設(shè)函數(shù)z=f(x,y)在點(diǎn)(1,1)處可微且f=f求第225頁(yè),共407頁(yè)31.設(shè)u=f(x,y,z)有連續(xù)的一階偏導(dǎo)數(shù),又函數(shù)y=y(x)及z=z(x)分別由exy?xy=2和exdt確定。求.第226頁(yè),共407頁(yè)32.設(shè)變換可把方程簡(jiǎn)化為求常數(shù)a.第227頁(yè),共407頁(yè)(y)(y)?z?zy33.設(shè)函數(shù)f(u)有連續(xù)一階導(dǎo)數(shù),f(0)=2且z=xf(|x,+yf(|x,滿足?x+?y=x(x≠0(y)(y)?z?zy第228頁(yè),共407頁(yè)34.設(shè)函數(shù)f(x,y)有連續(xù)二階偏導(dǎo)數(shù)。滿足且在極坐標(biāo)系下可表示成f(x,y)=g(r),其中r,求f(x,y).第229頁(yè),共407頁(yè)35.設(shè)z=f具有二階連續(xù)偏導(dǎo)數(shù),且z=x2+y2,試求函數(shù)z的表達(dá)式。第230頁(yè),共407頁(yè)36.求函數(shù)f(x,y)=x4+y4?(x+y)2的極值。第231頁(yè),共407頁(yè)37.求二元函數(shù)f(x,y)=x2(2+y2)+ylny的極值。第232頁(yè),共407頁(yè)38.設(shè)函數(shù)z=f(xy,yg(x)),其中f函數(shù)具有二階連續(xù)偏導(dǎo)數(shù),函數(shù)g(x)可導(dǎo)且在x=1處第233頁(yè),共407頁(yè)39.已知函數(shù)f(u,v)具有二階連續(xù)偏導(dǎo)數(shù),f(1,1)=2是f(u,v)的極值,z=f(x+y,f(x,y)).求.第234頁(yè),共407頁(yè)40.求由方程2x2+2y2+z2+8xz?z+8=0所確定的函數(shù)z=f(x,y)的極值點(diǎn)。第235頁(yè),共407頁(yè)41.設(shè)f(x,y)有二階連續(xù)偏導(dǎo)數(shù),g(x,y)=f(exy,x2+y2),且f(x,y)=1?x?y+o,證明g(x,y)在(0,0)取得極值,判斷此極值是極大值還是極小值,并求出此極值。嚴(yán)選題·5.多元函數(shù)微分學(xué)第236頁(yè),共407頁(yè)42.求函數(shù)f(x,y)=x2+2y2?x2y2在區(qū)域D={(x,y)∣x2+y2≤4,y≥0}上的最大值和最小值。嚴(yán)選題·5.多元函數(shù)微分學(xué)第237頁(yè),共407頁(yè)43.設(shè)函數(shù)z=z(x,y)的微分dz=(2x+12y)dx+(12x+4y)dy,且z(0,0)=0,求函數(shù)z=z(x,y)在4x2+y2≤25上的最大值。第238頁(yè),共407頁(yè)44.求函數(shù)u=xy+2yz在約束條件x2+y2+z2=10下的最大值和最小值。第239頁(yè),共407頁(yè)45.求函數(shù)u=x2+y2+z2在約束條件z=x2+y2和x+y+z=4下的最大值與最小值。第240頁(yè),共407頁(yè)46.在橢圓3x2+2xy+3y2=1的第一象限部分上求一點(diǎn),使該點(diǎn)的切線與兩坐標(biāo)軸所圍成三角形面積最小,并求面積的最小值。嚴(yán)選題·5.多元函數(shù)微分學(xué)第241頁(yè),共407頁(yè)222(222嚴(yán)選題·5.多元函數(shù)微分學(xué)第242頁(yè),共407頁(yè)48.(僅數(shù)學(xué)一要求)求橢球面z2=1被平面x+y+z=0截得的橢圓長(zhǎng)半軸與短之長(zhǎng)。第243頁(yè),共407頁(yè)11xpyq11xpyqpqpq第244頁(yè),共407頁(yè)52.設(shè)f(x,y)在圓域x2+y2≤1上有連續(xù)一階偏導(dǎo)數(shù),且f(x,y)≤1.求證在單位圓內(nèi)至少有2「?f(xy)722「?f(xy)72嚴(yán)選題嚴(yán)選題·6.二重積分第245頁(yè),共407頁(yè)1.(1)設(shè)函數(shù)f(x,y)連續(xù),則dxf(x,y)dx=()第246頁(yè),共407頁(yè)(2)設(shè)函數(shù)f(x,y)連續(xù),則二次積分dxinxf(x,y)dy等于()第247頁(yè),共407頁(yè)第248頁(yè),共407頁(yè)第249頁(yè),共407頁(yè)3.設(shè)f(x,y)為連續(xù)函數(shù),則f(rcosθ,rsinθ)rdr等于()第250頁(yè),共407頁(yè)4.設(shè)f(x,y)是連續(xù)函數(shù),則dyf(x,y)dx=()第251頁(yè),共407頁(yè)第252頁(yè),共407頁(yè)6.設(shè)f(x,y)連續(xù),且f(x,y)=xy+f(x,y)dxdy,其中D由y=0,y=x2,x=1所圍成,第253頁(yè),共407頁(yè)I=Dsin2(x+y)dσ,J=Dln3(x+y)dσ,K=D(x+y)dσ,則()(A)I<K<J(B)K<J<I.(C)I<J<K.(D)J<I<K.第254頁(yè),共407頁(yè)8.設(shè)I=x+y≤1(x2+y3)dσ,J=x2+y2≤1(x4?y4)dσ,K=x2+y2≤1(x3?y2)dσ,則()(A)I<J<K(B)I<K<J.(C)J<I<K.(D)K<J<I.第255頁(yè),共407頁(yè)9.設(shè)I1=∫dσ,I2=∫dσ,I3=∫其中D:(x?1)2+(y?1)2≤2.則()第256頁(yè),共407頁(yè)10.如圖1正方形{(x,y)x≤1,y≤1}被其對(duì)角線劃分為四個(gè)區(qū)域Dk(k=1,2,3,4),Ik=ycosxdx,則EQ\*jc3\*hps21\o\al(\s\up1(x),4){Ik}=()I4.第257頁(yè),共407頁(yè)11.設(shè)Dk是圓域D={(x,y)∣x2+y2≤1}在第k象限的部分,記Ik=Dk(y?x)dxdy(k=1,2,3,4)第258頁(yè),共407頁(yè),第259頁(yè),共407頁(yè)∫EQ\*jc3\*hps14\o\al(\s\up7(4),0)dxf(x,y)dy=第260頁(yè),共407頁(yè)14.交換積分次序∫EQ\*jc3\*hps14\o\al(\s\up9(2),0)dx∫xf(x,y)dy=________.第261頁(yè),共407頁(yè)第262頁(yè),共407頁(yè)第263頁(yè),共407頁(yè)EQ\*jc3\*hps14\o\al(\s\up8(1),0)EQ\*jc3\*hps14\o\al(\s\up8(1),y)第264頁(yè),共407頁(yè)x2+y2≤1EQ\*jc3\*hps20\o\al(\s\up4(「),L)(x+1)2+2y2EQ\*jc3\*hps20\o\al(\s\up4(7),」)dx第265頁(yè),共407頁(yè),第266頁(yè),共407頁(yè)第267頁(yè),共407頁(yè)∫EQ\*jc3\*hps13\o\al(\s\up10(t),0)dx∫EQ\*jc3\*hps13\o\al(\s\up10(t),x)e-(x-y)2dy=________.第268頁(yè),共407頁(yè)22.設(shè)f(t)=∫EQ\*jc3\*hps14\o\al(\s\up9(t),0)dx∫xxdy,則函數(shù)f(t)在區(qū)間[0,π]上的最大值為_(kāi)_______.第269頁(yè),共407頁(yè)第270頁(yè),共407頁(yè)∫EQ\*jc3\*hps13\o\al(\s\up10(t),0)dx∫EQ\*jc3\*hps13\o\al(\s\up10(t),x)sin(xy)2dy.第271頁(yè),共407頁(yè)25.計(jì)算dydxdydx.第272頁(yè),共407頁(yè)26.計(jì)算二重積分Dx2+y2?1dσ,其中D={(x,y)∣0≤x≤1,0≤y≤1}.第273頁(yè),共407頁(yè).27.計(jì)算二重積分Dmax{xy,1}dxdy,其中D={(x,y)∣0≤x≤2,0≤y≤2}.第274頁(yè),共407頁(yè)28.設(shè)D=表示不超過(guò)1+x2+y2的最大整數(shù),計(jì)算二重積分xydxdy.第275頁(yè),共407頁(yè).29.計(jì)算二重積分D(x-y)dxdy,其中D={(x,y)∣(x-1)2+(y-1)2≤2,y≥x}.第276頁(yè),共407頁(yè)EQ\*jc3\*hps21\o\al(\s\up6(〔),l)第277頁(yè),共407頁(yè)31.計(jì)算二重積分,其中D是由曲線y=?x圍成的區(qū)域。第278頁(yè),共407頁(yè)32.計(jì)算二重積分3dxdy,其中D由曲線x與x?y=0圍成。第279頁(yè),共407頁(yè)第280頁(yè),共407頁(yè)(x2x2+y2+ydσ,其中D是由圓x2+y2=4和(x+1)2+y2=1所圍成的平面區(qū)第281頁(yè),共407頁(yè)35.計(jì)算二重積分Dexxydxdy,其中D是以曲線y=,y=及y軸為邊界的無(wú)界區(qū)域。第282頁(yè),共407頁(yè)36.計(jì)算積分sinθr2dr.第283頁(yè),共407頁(yè)1第284頁(yè),共407頁(yè)EQ\*jc3\*hps14\o\al(\s\up9(t),0)dxEQ\*jc3\*hps14\o\al(\s\up9(t),x)第285頁(yè),共407頁(yè)(2)設(shè)f(x,y)在D上連續(xù),且f(x,y)dσ=0,∫x,y)dσ=1嚴(yán)選題嚴(yán)選題·6.二重積分第286頁(yè),共407頁(yè)∫EQ\*jc3\*hps13\o\al(\s\up11(1),0)f設(shè)f(x),g(x)在[0,1]上連續(xù),且同時(shí)單調(diào)增,證明:(x)g(x)dx≥∫EQ\*jc3\*hps13\o\al(\s\up10(1),0)f(x)dx)∫EQ\*jc3\*hps13\o\al(\s\up10(1),0)g(x)dx).嚴(yán)選題嚴(yán)選題·7.無(wú)窮級(jí)數(shù)第287頁(yè),共407頁(yè)∞∞∞∞第288頁(yè),共407頁(yè)①若an收斂,則an收斂。第289頁(yè),共407頁(yè),第290頁(yè),共407頁(yè)第291頁(yè),共407頁(yè),,,第292頁(yè),共407頁(yè)∞6.已知級(jí)數(shù)an收斂,則下列結(jié)論不正確的是()∞∞第293頁(yè),共407頁(yè)第294頁(yè),共407頁(yè)∞第295頁(yè),共407頁(yè)∞9.若級(jí)數(shù)an收斂,則級(jí)數(shù)()第296頁(yè),共407頁(yè),第297頁(yè),共407頁(yè)∞,∞∞第298頁(yè),共407頁(yè)∞∞∞∞∞∞∞∞第299頁(yè),共407頁(yè)第300頁(yè),共407頁(yè)∞(C)若an收斂,則存在常數(shù)p>1,使npan∞(D)若存在常數(shù)p>1,使npan存在,則an收斂。第301頁(yè),共407頁(yè)第302頁(yè),共407頁(yè)16.設(shè)在x=?2處條件收斂,則n2n在x=ln處()第303頁(yè),共407頁(yè)第304頁(yè),共407頁(yè)18.設(shè)an>0,p>1,且npan=1.若an收斂,則p的取值范圍為_(kāi)_______.第305頁(yè),共407頁(yè)第306頁(yè),共407頁(yè)斂域?yàn)開(kāi)_______.第307頁(yè),共407頁(yè)EQ\*jc3\*hps21\o\al(\s\up2147483647(l),n)________.第308頁(yè),共407頁(yè)第309頁(yè),共407頁(yè)23.設(shè)冪級(jí)數(shù)anxn在x第310頁(yè),共407頁(yè)第311頁(yè),共407頁(yè)第312頁(yè),共407頁(yè)26.已知y=y(x)滿足y,=x+y,且y(0)=1,試討論級(jí)第313頁(yè),共407頁(yè)27.將f(x)=在x=4處展開(kāi)為冪級(jí)數(shù)。第314頁(yè),共407頁(yè)28.將ln在x=-1處展開(kāi)為冪級(jí)數(shù)。第315頁(yè),共407頁(yè)第316頁(yè),共407頁(yè)30.求冪級(jí)數(shù)xx2n+1的收斂域及和函數(shù)。第317頁(yè),共407頁(yè)第318頁(yè),共407頁(yè)第319頁(yè),共407頁(yè)第320頁(yè),共407頁(yè)34.設(shè)f(xctanx試將f(x)展開(kāi)成x的冪級(jí)數(shù),并求級(jí)數(shù)的和。第321頁(yè),共407頁(yè)第322頁(yè),共407頁(yè)∞第323頁(yè),共407頁(yè)∞和函數(shù)。第324頁(yè),共407頁(yè),∞anxn收斂,并求其和函數(shù)。第325頁(yè),共407頁(yè)∞,第326頁(yè),共407頁(yè)40.設(shè)f(x)在x=0某鄰域內(nèi)有連續(xù)一階導(dǎo)數(shù),.試證:級(jí)數(shù)nf條件收斂。第327頁(yè),共407頁(yè)第328頁(yè),共407頁(yè),第329頁(yè),共407頁(yè)43.設(shè)f(x)在[0,+∞)上連續(xù),且f2dx收斂,令andx,證明:收斂。第330頁(yè),共407頁(yè),第331頁(yè),共407頁(yè)第332頁(yè),共407頁(yè)46.將f(x)=x?1(0≤x≤2)展開(kāi)成周期為4的余弦級(jí)數(shù)。第333頁(yè),共407頁(yè)47.將函數(shù)f(x)=1?x2(0≤x≤π)展開(kāi)成余弦級(jí)數(shù),并求級(jí)數(shù)的和。第334頁(yè),共407頁(yè)48.將函數(shù)f(x)=2+x(?1≤x≤1)展開(kāi)成以2為周期的傅里葉級(jí)數(shù),并由此求級(jí)數(shù)的和。嚴(yán)選題·8.向量代數(shù)與空間解析及多元應(yīng)用第335頁(yè),共407頁(yè)第336頁(yè),共407頁(yè)2.設(shè)有直線L及平面Π:4x?2y+z?2=0,則直線L()第337頁(yè),共407頁(yè)3.已知曲面z=4?x2?y2上點(diǎn)P處的切平面平行于平面2x+2y+z?1=0,則點(diǎn)P的坐標(biāo)是()第338頁(yè),共407頁(yè)4.在曲線x=t,y=?t2,z=t3的所有切線中,與平面x+2y+z=4平行的切線()第339頁(yè),共407頁(yè),(B)曲面z=f(x,y)在點(diǎn)(0,0,f(0,0))的法向量為{3,1,1}.第340頁(yè),共407頁(yè)第341頁(yè),共407頁(yè)7.曲面x2+cos(xy)+yz+x=0在點(diǎn)(0,1,?1)處的切平面方程為()第342頁(yè),共407頁(yè)8.設(shè)(a×b).c=2,則(a+b)×(b+c).(c+a)=________.第343頁(yè),共407頁(yè)第344頁(yè),共407頁(yè)10.與兩直線t及都平行,且過(guò)原點(diǎn)的平面方程為_(kāi)_______.第345頁(yè),共407頁(yè)第346頁(yè),共407頁(yè)12.已知兩條直線的方程是L1:x?1=y?2=z?3,L2第347頁(yè),共407頁(yè)13.設(shè)一平面經(jīng)過(guò)原點(diǎn)及點(diǎn)(6,?3,2),且與平面4x?y+2z=8垂直,則此平面方程為第348頁(yè),共407頁(yè)單位法向量為_(kāi)_______.第349頁(yè),共407頁(yè)x-1y-1z-1x-1y-1z-1第350頁(yè),共407頁(yè)x2+y2+z2)在點(diǎn)M(1,2,-2)處的梯度graduM=________.第351頁(yè),共407頁(yè)17.函數(shù)f(x,y,z)=x2y+z2在點(diǎn)(1,2,0)處沿向量n=(1,2,2)的方向?qū)?shù)為_(kāi)_______.第352頁(yè),共407頁(yè),第353頁(yè),共407頁(yè)19.設(shè)可微函數(shù)f(x,y,z)在點(diǎn)(x0,y0,z0)處的梯度g={1,2,3},則函數(shù)f(x,y,z)在點(diǎn)(x0,y0,z0)處沿l={1,1,1}方向的方向?qū)?shù)為_(kāi)_______.第354頁(yè),共407頁(yè)20.設(shè)u=3x2y-2yz+z3,v=4xy-z3.則u在點(diǎn)P(1,-1,1)處沿gradv方向的方向?qū)?shù)為第355頁(yè),共407頁(yè)21.設(shè)函數(shù)u=u(x,y,z)由方程x+y+z+u+xy2z3eu=1所確定,求函數(shù)u(x,y,z)在點(diǎn)(0,0,0)處沿橢球面x2+2y2+3(z-1)2=3在該點(diǎn)的外法線方向的方向?qū)?shù)。第356頁(yè),共407頁(yè)22.函數(shù)u=x2+y2+z2在橢球面2x2+2y2+z2=1上哪一點(diǎn)沿哪一個(gè)方向的方向?qū)?shù)最大?并求其最大值。第357頁(yè),共407頁(yè)23.求曲線a2在點(diǎn)M0(0,0,a)處的切線及法平面。第358頁(yè),共407頁(yè)24.求直線L:x?1=y=z?24.求直線L:x?1=y=z?1在平面Π:x?y+2z?1=0上的投影直線L0的方程,并求L第359頁(yè),共407頁(yè)25.求橢球面x2+2y2+3z2=21上某點(diǎn)處的切平面Π,使平面Π過(guò)已知直線嚴(yán)選題·8.向量代數(shù)與空間解析及多元應(yīng)用第360頁(yè),共407頁(yè)第361頁(yè),共407頁(yè)27.設(shè)有一小山,取它的底面所在的平面為xOy坐標(biāo)面,其底部所占的區(qū)域?yàn)镈=小山的高度函數(shù)為h(x,y)=75?x2?y2+xy.(1)設(shè)M(x0,y0)為區(qū)域D上一點(diǎn),問(wèn)h(x,y)在該點(diǎn)沿平面上什么方向的方向?qū)?shù)最大?若記此方向?qū)?shù)的最大值為g(x0,y0),試寫(xiě)出g(x0,y0)的表達(dá)式。點(diǎn)。也就是說(shuō),要在D的邊界線x2+y2?xy=75上找出使(1)中的g(x,y)達(dá)到最大值的點(diǎn)。試確定攀登起點(diǎn)的位置。嚴(yán)選題·8.向量代數(shù)與空間解析及多元應(yīng)用第362頁(yè),共407頁(yè)28.設(shè)一禮堂的頂部是一個(gè)半橢球面,其方程為z,求下雨時(shí)過(guò)房頂上點(diǎn)P處的雨水流下的路線方程(不計(jì)摩擦)。嚴(yán)選題·9.多元積分學(xué)及其應(yīng)用第363頁(yè),共407頁(yè)第364頁(yè),共407頁(yè)2.設(shè)有空間區(qū)域Ω1:x2+y2+z2≤R2,z≥0及Ω2:x2+y2+z2≤R2,x≥0,y≥0,z≥0,則()第365頁(yè),共407頁(yè)3.設(shè)S:x2+y2+z2=a2(z≥0),S1為S在第一卦限中的部分,則有()嚴(yán)選題·9.多元積分學(xué)及其應(yīng)用第366頁(yè),共407頁(yè)4.設(shè)L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L4:2x2+y2=2為四條逆時(shí)針?lè)较虻钠矫媲€,記Iidxdy(i=1,2,3,4),則max{I1,I2,I3,I4}
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年四川天府新區(qū)實(shí)驗(yàn)中學(xué)教師招聘14人備考題庫(kù)及參考答案詳解
- 2025年寶雞市渭濱區(qū)神農(nóng)鎮(zhèn)衛(wèi)生院招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 超硬材料產(chǎn)業(yè)技術(shù)研究院公開(kāi)招聘第二批科研人員20人備考題庫(kù)及一套參考答案詳解
- 2025年賀州市公安機(jī)關(guān)特殊緊缺人才備考題庫(kù)招錄6人快來(lái)加入我們吧及完整答案詳解一套
- 什邡市人力資源和社會(huì)保障局什邡市民政局2025年面向全市公開(kāi)選調(diào)工作人員的備考題庫(kù)及參考答案詳解1套
- 興國(guó)縣招聘城市社區(qū)專職網(wǎng)格員筆試真題2024
- 濟(jì)南市濟(jì)陽(yáng)區(qū)城市建設(shè)投資集團(tuán)有限公司2025年社會(huì)招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2025年重慶備考題庫(kù)與智慧醫(yī)學(xué)研究院聘用人員招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2025年南京銀行鹽城分行響水支行社會(huì)招聘?jìng)淇碱}庫(kù)有答案詳解
- 2025年廈門(mén)大學(xué)教育研究院行政秘書(shū)招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 黨的二十屆四中全會(huì)精神題庫(kù)
- 《七年級(jí)上冊(cè)歷史第三單元綜合復(fù)習(xí)》課件
- 《中國(guó)飲食文化》 課件 第四章?中國(guó)茶文化
- GB/T 6540-2025石油產(chǎn)品顏色的測(cè)定
- 2026年黃河水利職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)新版
- 收費(fèi)室考試題大庫(kù)及答案
- (2025年)煙花爆竹經(jīng)營(yíng)培訓(xùn)考試試題及答案
- 四川大學(xué)內(nèi)部高分子物理課件
- 《水質(zhì)監(jiān)測(cè)智能無(wú)人實(shí)驗(yàn)室建設(shè)與運(yùn)維技術(shù)要求》
- 城市軌道交通線路與站場(chǎng)課件 模塊三:城市軌道交通線路平面
- 消防維保應(yīng)急預(yù)案及措施
評(píng)論
0/150
提交評(píng)論