山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題含解析_第1頁
山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題含解析_第2頁
山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題含解析_第3頁
山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題含解析_第4頁
山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省莒縣第一中學2025年數(shù)學高一第一學期期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.化簡:A.1 B.C. D.22.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象為1,則b的象為A.1,2中的一個 B.1,2C.2 D.無法確定3.設集合,3,,則正確的是A.3, B.3,C. D.4.已知函數(shù)的圖象的對稱軸為直線,則()A. B.C. D.5.命題“對任意x∈R,都有x2≥1”的否定是()A.對任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<16.已知a>0,則當取得最小值時,a值為()A. B.C. D.37.在平面直角坐標系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.8.設函數(shù),則下列結論錯誤的是()A.的一個周期為B.的圖像關于直線對稱C.的圖像關于點對稱D.在有3個零點9.已知函數(shù),則()A.5 B.2C.0 D.110.設集合A={1,2,3},B={2,3,4},則A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的零點為,不等式的最小整數(shù)解為,則__________12.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是_________.13.若圓上有且僅有兩個點到直線的距離等于1,則半徑R的取值范圍是_____14.若在上是減函數(shù),則a的最大值是___________.15.已知函數(shù)是奇函數(shù),當時,,若,則m的值為______.16.函數(shù)的最小正周期是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(1)若,求的值;(2)若,且,求的值18.函數(shù)=的部分圖像如圖所示.(1)求函數(shù)的單調遞減區(qū)間;(2)將的圖像向右平移個單位,再將橫坐標伸長為原來的倍,得到函數(shù),若在上有兩個解,求的取值范圍.19.設二次函數(shù)在區(qū)間上的最大值、最小值分別是M、m,集合若,且,求M和m的值;若,且,記,求的最小值20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調減區(qū)間;(3)當時,畫出函數(shù)的圖象.21.已知二次函數(shù)滿足,且的最小值是求的解析式;若關于x的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)m的取值范圍;函數(shù),對任意,都有恒成立,求實數(shù)t的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)二倍角公式以及兩角差的余弦公式進行化簡即可.【詳解】原式.故選C.【點睛】這個題目考查了二倍角公式的應用,涉及兩角差的余弦公式以及特殊角的三角函數(shù)值的應用屬于基礎題.2、A【解析】根據(jù)映射中象與原象定義,元素與元素的對應關系即可判斷【詳解】映射f:A→B,其中A={a,b},B={1,2}已知a的象為1,根據(jù)映射的定義,對于集合A中的任意一個元素在集合B中都有唯一的元素和它對應,可得b=1或2,所以選A【點睛】本題考查了集合中象與原象的定義,關于對應關系的理解.注意A集合中的任意元素在集合B中必須有對應,屬于基礎題3、D【解析】根據(jù)集合的定義與運算法則,對選項中的結論判斷正誤即可【詳解】解:集合,3,,則,選項A錯誤;2,3,,選項B錯誤;,選項C錯誤;,選項D正確故選D【點睛】本題考查了集合的定義與運算問題,屬于基礎題4、A【解析】根據(jù)二次函數(shù)的圖像的開口向上,對稱軸為,可得,且函數(shù)在上遞增,再根據(jù)函數(shù)的對稱性以及單調性即可求解.【詳解】二次函數(shù)的圖像的開口向上,對稱軸為,且函數(shù)在上遞增,根據(jù)二次函數(shù)的對稱性可知,又,所以,故選:A【點睛】本題考查了二次函數(shù)的單調性以及對稱性比較函數(shù)值的大小,屬于基礎題.5、D【解析】根據(jù)含有一個量詞的否定是改量詞、否結論直接得出.【詳解】因為含有一個量詞的否定是改量詞、否結論,所以命題“對任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故選:D.【點睛】本題考查含有一個量詞的否定,屬于基礎題.6、C【解析】利用基本不等式求最值即可.【詳解】∵a>0,∴,當且僅當,即時,等號成立,故選:C7、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設切點為,所以,設,則,,故選D.考點:1、圓的幾何性質;2、數(shù)形結合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質、數(shù)形結合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調性法:首先確定函數(shù)的定義域,然后準確地找出其單調區(qū)間,最后再根據(jù)其單調性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應用方法②求的最小值的8、D【解析】利用輔助角公式化簡,再根據(jù)三角函數(shù)的性質逐個判斷即可【詳解】,對A,最小周期為,故也為周期,故A正確;對B,當時,為的對稱軸,故B正確;對C,當時,,又為的對稱點,故C正確;對D,則,解得,故在內有共四個零點,故D錯誤故選:D9、C【解析】由分段函數(shù),選擇計算【詳解】由題意可得.故選:C.【點睛】本題考查分段函數(shù)的求值,屬于簡單題10、A【解析】根據(jù)并集定義求解即可.【詳解】∵A={1,2,3},B={2,3,4},根據(jù)并集的定義可知:A∪B={1,2,3,4},選項A正確,選項BCD錯誤.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、8【解析】利用單調性和零點存在定理可知,由此確定的范圍,進而得到.【詳解】函數(shù)為上的增函數(shù),,,函數(shù)的零點滿足,,的最小整數(shù)解故答案為:.12、(0,1)【解析】將方程的零點問題轉化成函數(shù)的交點問題,作出函數(shù)的圖象得到m的范圍【詳解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)與y=m的圖象,要使函數(shù)g(x)=f(x)﹣m有3個零點,則y=f(x)與y=m的圖象有3個不同的交點,所以0<m<1,故答案為(0,1)【點睛】本題考查等價轉化的能力、利用數(shù)形結合思想解題的思想方法是重點,要重視13、【解析】根據(jù)題意分析出直線與圓的位置關系,再求半徑的范圍.【詳解】圓心到直線的距離為2,又圓(x﹣1)2+(y+1)2=R2上有且僅有兩個點到直線4x+3y=11的距離等于1,滿足,即:|R﹣2|<1,解得1<R<3故半徑R的取值范圍是1<R<3(畫圖)故答案為:【點睛】本題考查直線與圓的位置關系,考查數(shù)形結合的思想,屬于中檔題.14、【解析】求出導函數(shù),然后解不等式確定的范圍后可得最大值【詳解】由題意,,,,,,,∴,的最大值為故答案為:【點睛】本題考查用導數(shù)研究函數(shù)的單調性,考查兩角和與差的正弦公式,考查正弦函數(shù)的性質,根據(jù)導數(shù)與單調性的關系列不等式求解即可.15、【解析】由奇函數(shù)可得,則可得,解出即可【詳解】因為是奇函數(shù),,所以,即,解得故答案為:【點睛】本題考查利用奇偶性求值,考查已知函數(shù)值求參數(shù)16、【解析】根據(jù)正弦函數(shù)的最小正周期公式即可求解【詳解】因為由正弦函數(shù)的最小正周期公式可得故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用誘導公式化簡可得,然后利用二倍角公式求解即可;(2)由條件可得,,然后根據(jù)求解即可.【小問1詳解】因為,所以【小問2詳解】因為,所以,所以18、(1);(2).【解析】(1)先求出w=π,再根據(jù)圖像求出,再求函數(shù)的單調遞減區(qū)間.(2)先求出=,再利用數(shù)形結合求a的取值范圍.【詳解】(1)由題得.所以所以.令所以函數(shù)的單調遞減區(qū)間為.(2)將的圖像向右平移個單位得到,再將橫坐標伸長為原來的倍,得到函數(shù)=,若在上有兩個解,所以,所以所以所以a的取值范圍為.【點睛】本題主要考查三角函數(shù)解析式的求法和單調區(qū)間的求法,考查三角函數(shù)的圖像變換和三角方程的有解問題,考查三角函數(shù)的圖像和性質,意在考查學生對這些知識的掌握水平和分析推理能力.19、(Ⅰ),;(Ⅱ).【解析】(1)由……………1分又…3分…………4分……………5分……………6分(2)x=1∴,即……………8分∴f(x)=ax2+(1-2a)x+a,x∈[-2,2]其對稱軸方程為x=又a≥1,故1-……………9分∴M=f(-2)="9a-2"…………10分m=……………11分g(a)=M+m=9a--1……………14分=………16分20、(1);(2);(2)詳見解析.【解析】(1)利用二倍角公式和輔助角法得到函數(shù)為,再利用周期公式求解;所以函數(shù)的周期為;(2)令,利用正弦函數(shù)的性質求解;(3)由列表,利用“五點法”畫出函數(shù)圖象.:【詳解】(1),,,所以函數(shù)的周期為;(2)令,解得,所以函數(shù)的單調減區(qū)間是;(3)由列表如下:0xy0-2020則函數(shù)的圖象如下:.21、(1)(2)(3)【解析】(1)因,故對稱軸為,故可設,再由得.(2)有唯一實數(shù)根可以轉化為與有唯一的交點去考慮.(3),任意都有不等式成立等價于,分、、和四種情形討論即可.解析:(1)因,對稱軸為,設,由得,所以.(2)由方程得,即直線與函數(shù)的圖象有且只有一個交點,作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論