版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PWC
Innovatesmarter
HowAIistransforming
ResearchandDevelopment
1
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC2
Tableofcontents
ExecutiveSummary3
1Behindthecurtain:Today,srealityinR&Dandoperations4
Industrychallenges
5
TheAIrevolutioninR&D6
2AItosupportwithintheproductlifecycle7
Keyvaluableusecaseswithintheproductlifecycle,availabletoday8
BuildinganAI-enabledR&Dorganisation14
3SuccessfulAIimplementationsarebusiness-led,nottech-led17
4Conclusion20
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC3
ExecutiveSummary
Asindustriesfaceincreasingpressuretoinnovateswiftlyandsustainably,integratingartificial
intelligence(AI)intoResearchandDevelopment(R&D)processeshasbecomeessential.AIhasthepotentialtorevolutioniseR&Dbyaddressingchallengeslikeacceleratedtimetomarket,complexproductspecifications,andstrictregulatoryrequirements.
Bytransformingvastdataintoactionableinsights,AIenablesorganisationstostreamline
development,enhanceresourceefficiency,andbolstercompliance.Keyapplicationsthatare
achievablewithtoday’sstateoftechnologyincludevariantmanagement,requirementsengineering,andregulatoryalignmentthroughouttheproductlifecycle.EmbracingAIrequiresstrategic
adjustments,focusingondataquality,security,availability,andempoweringtheworkforcewithnewcapabilities.
ThePwCframeworklaysthegroundworkforovercomingimplementationbarriersandfosteringacultureofcontinuousinnovation,positioningorganisationsforlong-termsuccessinanincreasinglysustainability-focusedmarket.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC4
1
BehindthecurtainToday’srealityin
R&Dandoperations
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC5
Industrychallenges
Asthe2025studyfromPwCincollaborationwithMicrosoft
AIin
operations:Revolutionisingthemanufacturingindustry
has
shown,thediscretemanufacturingindustryisunderimmense
pressuretoinnovate.Rapidlyevolvingcustomerexpectationsandtechnologicaladvancesmeanthatproductsandprocessesmustbeimprovedcontinuously.Innovationisnolongeroptional;itis
essentialfordifferentiation.
Timetomarkethasbecomeadecisivefactorincompetitiveness.
PwC'sresearchfromanupcomingstudyonthefutureofR&D
showsthatcompaniesmustacceleratetheirdevelopmentcyclestoseizeopportunitieswhilebalancingspeedwithqualityand
compliance.Meanwhile,growingproductcomplexityand
portfoliodiversificationarechallengingtraditionalR&Dprocesses,necessitatingmoresophisticatedcoordinationbetween
engineering,designandsupplychainfunctions.
Compoundingthesepressuresisthescarcityofskilledtalent.
Thereishighdemandforengineers,designers,andspecialistsinadvancedmanufacturing,whichlimitsthecapacitytoscale
innovation.Theissueofsustainabilityaddsanotherlayerof
complexity.Organisationsarecompelledtodesignproductsandprocessesthatreduceenvironmentalimpact,optimiseresourcesandcomplywithemergingregulatoryandsocietalexpectations.
Together,thesefactorscreateachallengingenvironmentinwhichincrementalimprovementsarenolongersufficient.Companies
mustadoptnewapproachesthatenhanceR&Deffectivenessandaccelerateinnovation.
Atthesametime,AIpresentsauniqueopportunity.Oursurveyreport,
AIinoperations:Revolutionisingthemanufacturing
industry
,producedtogetherwithMicrosoft,showsthatartificialintelligencefostersinnovationinbusinessenvironmentsby
optimisingdataanalysis,detectingpatternsandtrends,and
empoweringinformeddecision-makingandcreativesolutions.
Nearly60%ofrespondentsexpectsanincreaseinoperatingprofitmarginthroughtheuseofAI.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC6
TheAIrevolutioninR&D
R&Disthecornerstoneofinnovationandattheheartofthese
challenges,makingitanidealareainwhichtoapplyartificial
intelligence.AIhasthepowertotransformthewayorganisationsinnovate,turningdataintoactionableinsightsandacceleratingdevelopmentanddecision-makingprocesses.
Byanalysinglargeandcomplexdatasets,AIenablesfasterconceptvalidationespeciallyforcomplexsystems,predictivemodelling
andoptimiseddesignprocesses,reducingrelianceoncostlyphysicalprototypes.AIalsohelpstoidentifyrisksearlyon,minimiseinefficienciesandalignproductdevelopmentmoreaccuratelywithmarketdemand.
Thesustainabilitybenefitsareequallycompelling.AIcansupportthecreationofresource-efficientdesignsandtheoptimisationofmaterials,aswellasthedevelopmentofcircularproduct
strategies,therebyembeddingenvironmentalresponsibilityintoR&Dfromtheoutset.
IntegratingAIintoR&Disastrategicshift,notmerelya
technologyupgrade.Itstrengthensinnovationcapabilities,shortensdevelopmentcyclesandenablesmanufacturerstocompeteeffectivelyinafast-moving,complexand
sustainability-drivenmarket.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC7
2
AItosupportwithintheproductlifecycle
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC8
Keyvaluableusecaseswithin
theproductlifecycle,availabletoday
Intoday'sdynamicbusinessworld,theuseofAIisbecoming
increasinglyimportanttoenhancetheefficiencyand
competitivenessofcompanies.Particularlyinthecontextoftheproductlifecycle,AIopensamultitudeofopportunities.
Productlifecycle
Innovation
Productdevelopment(e.g.V-model)
Order
Realisation
process
Phaseout
Idea
management
Projectscoping
Project
feasibility
Productstrategy
ProductDraftLaunchSellProduce,
conceptionfreezedeliver
andservice
Endoflife
Process
Eachofthefivemainphasesoftheproductlifecycle—innovation,productdevelopment,realisation,orderprocess,andphase-out—presentschallengesthataresolvablewithtoday'sstateofAI
technology.Thesetechnologiesempowercompaniestostreamlineoperations,anticipatemarketneeds,andswiftlyadapttochange.Itpresentsanopportunitytoacceleratetimetomarkettimelines,improveproductsbycostandinnovation,easeworkloadfor
resources,improveR&Dpowerbyfacilitatingcollaboration,alignmentandcoordination,tonameonlyafewofAI’svaluedrivers.ThefollowingsectionspresentmatureusecasesforAIwithintheproductlifecycle.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC9
AItooptimisevariantand
complexitymanagement
Inproductdevelopment,masteringvariantmanagementisoftenchallengingduetoitsinherentcomplexity,necessitating
innovativesolutionsinR&D.Thekeyliesineffectivelymanagingexternalandinternalcomplexities—balancingportfolio,module,andcomponentvariantswithcustomerrequirements.Ratherthaneliminatingcomplexity,thegoalistoharmonisemarketneeds
withcompanyofferings.Utilisingrealdata,likesalesfigures,iscrucialtoquantifyingandvaluingthiscomplexity.
Effectivevariantmanagementdistinguishes‘highrunners’from
‘lowrunners’andlinksthesetotechnicalimplications,suchasthenumberandseverityofcomponentvariantsrequired.Misjudgingthecostofcomplexitycanleadtofinancialinefficienciesandover-engineering.Manycomplexitymanagementsolutionsareoften
impracticalandfurthercomplicatematters.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC10
CurrentAIsolutionstailoredforR&D,likePwC’sMETUS*,address
thesechallengesbyoptimisingproductconfigurationsusing
advancedalgorithms.Theyhelpreduceunnecessarycomplexity,minimisecomponentcounts,andmaintainawiderangeof
configurationoptions.METUSleveragesAItoquantifytheimpactofexternalvarietyonaportfolio,evaluatetechnologyoptions,andproposebalancedsolutions.Drawingoninsightsfromourclient
engagementsandexperience,thisleadstoresourceefficiencies,achievingupto50%variantsavings,25%componentreductions,andupto33%costsavings—enhancingagilityandmarket
responsiveness.
Supply
chain
Market
Fit
L_」
LLM
withliveconnectiontofullyconnectedMETUSdatamodel
A
METUS
APwCProduct
Servicestructure
productstructure
AItodriverequirementsengineering
Requirementsengineeringprovidesthefoundationforproductdevelopment.Weakrequirementsengineeringcanslowprogressandincreaserisk.Itcanleadtofragmentedcommunication,
incompleteorinconsistentdocumentation,andscopemisalignment—sometimesevencommercialfailures,whenproductsmissthemarkwithcustomersorthemarket.
*PwC’s
METUS
isanadvancedmethodologyandsoftwaresuitedesignedtooptimiseproductdevelopmentandportfoliomanagement.LeveragingAI,METUSenablesorganisationstosystematicallymanagetheirproductsandservices.Theplatformsupportsend-to-endandcross-departmentaldigitalmodelingandintegratesseamlesslywithPLM/ERPsystems.Formoreinformation,visit:
https://pwc.to/3JEzMTH
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC11
Operationally,poorrequirementsmanagementdrivesdelays,cost
overruns,andresourceinefficiencies.Misalignmentamongteamsandalackofclarityonprojectobjectivesfurtherexacerbatethesechallenges,compromisingtheproduct'squalityandalignment
withclientneeds.
GenerativeAI
Machine-readabletext
OpticalCharacterRecognition(OCR)
+
Atomic,clear
andconsolidatedrequirements
Semanticrules
Handwrittenrequirementsspecification
Commonunderstandablerequirementsforthe
downstreamprocesses
GenerativeAIaddressestheseissuesbyenablinginstantextractionandconsolidationofrequirementsusingsemanticsandoptical
characterrecognition(OCR)totranslatehandwritteninformationintomachine-readabletext.Ourworkwithclientsdemonstrates
thatAI-drivensystemscanreducerequirementsderivationtimeby~60%,documentationeffortbyupto30–40%anddecrease
reworkby~25%throughimprovedrequirementconsistency,resultinginfasterdevelopmentcyclesandbetteralignmentbetweendesignoutcomesandcustomerexpectations.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC12
AItofacilitatecomplianceaspartofR&D
Intoday’sworld,thefunctionsofR&Dandcompliancearebecomingincreasinglyconnected—evenintegrated.Thisisduetocontinuouslyincreasingregulatoryrequirementsthatcausecompliancetobecomeanintegralpartofphaseswhereproductsarecreatedandmodified.Currentchallengesinproductcomplianceincludehighmanualefforttointerpretcomplexregulations,evaluatingand
mitigationofriskofnon-compliancefrominconsistentimplementation,andtime-intensiveauditpreparation.AItechnologycansupportinthesetasksalready.
OurexperienceshowsthatanAI-poweredcomplianceassistantisaneffectivesolution.Itidentifiesglobalregulatorychanges,translatesthemtoyourportfolio,andhelpsevaluatenecessary
modificationsacrosssystemsandsub-systems.Wehaveseensuchtechnologyeffectivelyspanfromautomaticscanningtoevaluationofcurrentcompliance,throughtoconnectingtoR&Ddepartmentstoexecuteneededchanges.Ittherebystreamlinestheprocessandreduceshumanerror.ThebenefitsofthisAI-integratedsystemaresubstantial,itachievesapproximately50%timereduction,upto60-70%reductioninmanualeffort,and~40%errorreduction.Theseimprovementsnotonlyreduce
auditcostsbutalsoenhanceaccuracyandefficiency,fosteringamorereliableandcompliantR&Denvironment.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC13
AItoboostdatamigration
Datamigrationprogrammesoftentakeseveralyearstoexecute.InR&D,productlifecycle
management(PLM)transformationsarecommon—andtheytypicallyinvolvemigratinglarge
volumesofdata.Frequently,weseeasignificantvolumeofresourcesbeingdedicatedforthesole
purposeofsuchdatamigrations.Traditionally,itisoftenaverymanualprocessfordatatobe
validated,exportedandimportedfromdifferentdatadomainswithintheproductdevelopment
process(e.g.,CAD,BOMs).Companiesoftendealwithalargevolumeofdatatobehandledandseekspecialistexpertiseandconsistentinvolvement,makingtheentireendeavourtime-consumingand
expensive.
AI-basedsolutionswithtoday’sstateoftechnologycanautomatedatamigrationandvalidation
processesalready.Theycansupportinextractingdata,integratingdocuments,andcross-checkingvalidationresults.Keybenefitsseeninourprojectsworkincludetimesavingsofupto60%throughacceleratedtaskexecution,potentialcostreductionsofapproximately50%inprojectdelivery,andthoroughdataprotectionthatrequiresonlyabout25%involvementfromspecialiststaff.The
implementationofAI-drivenefficienciesenhancesbothlarge-scaledatamigrationandadaptivevalidation.
Datarequiredforvalidationprocess
?windchilli
TargetPLMsystem
1
Datarequired
forvalidationprocess
Extracteddatadumps
BMIDEDataModel*
5DataMigrationTool
Correctsourcedata
accordingtovalidationresults
Rawdata
Palantir
Datasetsandrelationships
Datatobevalidated
Resultsandfeedback
Importandpreparesourcedataforvalidation
Ontology:organiserelationshipswithinthedata
AI-powereddatavalidation+humanmonitoring
4
2
3
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC14
BuildinganAI-enabledR&Dorganisation
TheimplementationofAIpresentsimmensepotentialand
transformativepoweracrossvariousindustriesandbusiness
processes,asanalysedindetailbyPwCandMicrosoft’s
AIin
Operations
study.However,despitethetechnological
advancementsandthepromisedbenefitsofAI,organisationsfaceamultitudeofchallengesthathindersuccessfuldeploymentandutilisation.Thefollowingchartshowsanumberofnoteworthy
factorsthatarewidelyprevalentanddeeplyentrenchedin
operationalandstrategicprocesses.Wediscusseachoftheseinmoredetailinthenextsection.
BiggestchallengestoimplementAI42.4%
23.7%23.2%22.3%
19.9%18.5%
DataqualityITanddatasecurityDataavailabilityCostofAIsoftwareTechnologymaturityLackofAIknowledge
concernsandinnovationspeedacrosstheworkforce
Source:
PwCandMicrosoft,AIinoperations:Revolutionisingthemanufacturingindustry
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC15
Whyclean,consistent
dataiscriticalforAIsuccess
Safeguardingsystemsinanincreasingly
connectedworld
Breakingdownsilostounlockusabledata
Balancinginnovationwithinvestment
DataformsthebedrockofanyAIimplementation,anditsqualityfundamentallydictatestheefficiencyandperformanceof
algorithms.InR&D,dataqualityissuesoftenarisefrom
inconsistenciesintest-benchmeasurementsandundocumented
designiterations.LegacyPLMandsimulationsystemsmaystore
resultsinincompatibleformatsorlackstandardisedmetadata,
complicatingcross-projectanalyses.Consequently,AImodels
trainedonsuchfragmentedanderror-pronedatasetscanyield
unreliablepredictionsandlimitthediscoveryofmeaningfuldesigninsights.
ProtectingsensitiveinformationandestablishingdataintegrityareparamountwhenimplementingAIsystems.Theincreasing
integrationandinterconnectivityofsystemselevatetheriskofcyber-attacksanddatabreaches.Organisationsmustimplementrobustsecuritymeasurestocombatthesethreats.Thischallengearisesfromacontinuouslyevolvingthreatlandscapeanda
frequentlyinsufficientpreparednesstomeetnewsecurityrequirements.
Anothersignificantchallengepertainstotheavailabilityofthe
requiredvolumeanddiversityofdatanecessaryfortrainingAI
models.Often,theessentialdataeitherdoesnotexistinthe
desiredformatorisdifficulttoaccess.Thischallengeisdeeply
rootedinhistoricallydevelopedinformationsilosandproprietarydatabasesthathindersmoothdataflow.Companiesmust
strategisetocollectandprovidedatamoreefficiently.
InvestinginAItechnologiescaninvolvesubstantialfinancialandhumanresources.Thecostsassociatedwithdeveloping,deploying,andmaintainingAIsystemsposeasubstantialeconomichurdleformanyenterprises.Thischallengeisfrequentlylinkedtothe
necessityofacquiringspecialisedsoftwaresolutionsandengagingprofessionalsforsystemoversightanddevelopment.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC16
Keepingpacewith
rapidAIevolution
Buildingcapabilitytodriveadoption
TherapidlyevolvinglandscapeofAItechnologybringsforthbothopportunitiesandchallenges.Organisationsfinditdifficulttokeeppacewiththeinnovationspeedandcontinuallyupdatetheir
systems.Thischallengeoriginatesfromthenatureofthe
technologyitself,asnewbreakthroughsandimprovementsoccurinrapidsuccession,renderingexistingsystemsandprocesses
quicklyobsolete.
AnotherprominentbarrieristhegenerallackofknowledgeandskillsrelatedtoAIwithintheworkforce.TointegrateAI
successfully,knowledgeofthetechnologymustbewidely
disseminated,necessitatingtargetedtrainingandeducation.TheoriginofthischallengeliesintherelativelynovelnatureofAI
technologiesandtheshortageofestablishededucationalframeworks.
ThesechallengeshighlightthecomplexityofAIimplementationandelucidatehowdeeplytheir
causesandprevalencearerootedwithincorporatecultureandexistingtechnologies.Astrategic
approachencompassingbothtechnologicalandorganisationalsolutionsisimperativetoovercomethesebarrierssuccessfully.
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC17
3
SuccessfulAI
implementationsarebusiness-led,nottech-led
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC18
Abusiness-ledapproachisnecessarytoalignAIinitiativeswith
organisationalstrategyeffectively,integratingAIintoa
comprehensiveframeworkthatencompasseskeydimensions—strategy,products,processes,IT-technology,andorganisation.
ThissynergisticapproachbeginswithinspiringanddefiningthevisionforAIadoption,ensuringalignmentwiththeorganisation'sstrategicobjectivesandhigh-levelbusinessambitions.
Initially,byfocusingonaligningAIcapabilitieswithstrategic
goals,organisationscanidentifyimpactfulusecasesandassess
readinessfrombothbusinessandtechnicalperspectives.This
alignmentiscrucialforensuringthatAIsolutionsenhanceexistingprocesses,drivinginnovationandcompetitiveadvantage.
PwCsupportsclientsfrominitialscopingtoend-to-endimplementationandbringsinacceleratorsineverystage
InspireandscopeAssessStrategiseDevelopScaleEnable
Inspirationand
scopingworkshop
Readiness
assessment
(Gen)Al
strategy
Pilot
usecases
Scalable
platform
Global
enablement
?Shareanoutside-in
perspectiveonGenAl.
?ShowcaseexemplaryusecasesonGenAl.
?Understandhigh-levelbusinessneedsandambition
?AssesstheGenAl
capabilitiesfroma
businessand
technicalperspective.
?Identifyfocusareasanddriveroadmap
?DevelopGenAl
aspirationandvision
?CollectGenAlusecasesandassessfeasibilityand
prioritizethem.
?Collectrequired
capabilitiestosupportGenAladoption
?Detailoutbusinessproblemand
understandbusinessprocess
?Derivetechnicalanddata-related
requirementsandarchitecture·
?ImplementMVP
solutionforselectedusecase
?DesignAlPlatform
architecturebuildingupontheData
Platform.
?BuildDataPlatform
?Setupuniform
DevOpsprocessesandgovernance
processes
?Designplatformoperatingmodel
?Developupskillinginitiativeanddefinetargetgroups
?Designtraining
conceptandexecutewithinorganization
?Setupchangemanagementcampaign
Provenworkshopformat
Readinessassessment
GenAlstrategy
framework
Alusecasecompass
Dataplatformlibrary
Dataand
Alacademy
~1week
~4weeks
~8weeks
~12weeks
~20weeks
~30weeks
Innovatesmarter:HowAIistransformingResearchandDevelopmentPwC19
Strategisingbecomesafocalpoint,wheredetailedplansare
craftedtosupportAIadoption.Thisinvolvesprioritisinghigh-
impactusecases,fosteringend-to-endcontinuityinprocesses,andcreatingscalablesolutionsthatintegrateseamlesslyintoexistingITframeworks.Theemphasishereisonenhancingoperational
efficiencyandenablingfastertime-to-marketthroughefficientengineeringpracticesandrobustdatainfrastructures.
Developmentofpilotusecasesfollows,wheretechnical
architecturesarespecifiedandMinimumViableProduct(MVP)
solutionsareimplementedtoyieldimmediatevalue.Thisphase
underscoresthepracticalapplicationofAI,demonstratingtangibleoutcomesthatinformbroaderintegrationstrategies,supportedbyseamlesstoolchainsthatenhancecapabilities.Toeffectively
developandintegrateAIusecases,partneringwithatechnologyproviderlikeMicrosoftofferssubstantialadvantagesanddeliversimprovedoutcomes.
Leveragingpreconfiguredservicesandestablishedbestpracticesreducesdevelopmentandimplementationcomplexity,thereby
acceleratingtimetovalue.Furthermore,thecollaborationenablestheapplicationofstate-of-the-artITsecuritycontrolstomitigatesecurityandcompliancerisksandensurethesecure,compliant
deploymentofAIacrosstheorganisation.
Finally,organisationalenablementisacriticalcomponentoftheAIapproach,reinf
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 35430-2017 信息與文獻 期刊描述型元數(shù)據(jù)元素集》專題研究報告
- 《GB-T 41678.1-2022農(nóng)業(yè)機械和拖拉機 高壓電氣電子元件和系統(tǒng)的安全性 第1部分:通 用要求》專題研究報告
- 《GB-T 28030-2011接地導(dǎo)通電阻測試儀》專題研究報告
- 《GBT 33756-2017 基于項目的溫室氣體減排量評估技術(shù)規(guī)范 生產(chǎn)水泥熟料的原料替代項目》專題研究報告
- 養(yǎng)老社區(qū)床位預(yù)定金擔(dān)保協(xié)議
- 智能農(nóng)業(yè)設(shè)備運維員崗位招聘考試試卷及答案
- 2026年內(nèi)二科護理工作計劃
- 2025年白喉、百日咳、破傷風(fēng)、乙肝四聯(lián)制劑合作協(xié)議書
- 2025年平板型太陽熱水器項目建議書
- 兒童睡眠障礙的行為矯正方法
- 1688采購合同范本
- 購買鐵精粉居間合同范本
- GB/T 29730-2025冷熱水用分集水器
- 污水廠安全知識培訓(xùn)
- (2025年標準)存單轉(zhuǎn)讓協(xié)議書
- 醫(yī)學(xué)科研誠信專項培訓(xùn)
- 電力通信培訓(xùn)課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導(dǎo)原則
- 軟骨肉瘤護理查房
- 高級生物化學(xué)知識要點詳解
評論
0/150
提交評論