版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、余數(shù)除法的概念建構(gòu):從分物操作到數(shù)學(xué)表達(dá)演講人余數(shù)除法的概念建構(gòu):從分物操作到數(shù)學(xué)表達(dá)01余數(shù)除法的思維訓(xùn)練:從規(guī)則應(yīng)用到推理創(chuàng)新02余數(shù)除法的綜合應(yīng)用:從課堂練習(xí)到生活實(shí)踐03目錄2025小學(xué)二年級(jí)數(shù)學(xué)下冊(cè)余數(shù)除法(思維訓(xùn)練)課件作為深耕小學(xué)數(shù)學(xué)教學(xué)十余年的一線教師,我始終堅(jiān)信:數(shù)學(xué)思維的培養(yǎng)要從具體問題出發(fā),在“做”與“思”的交替中實(shí)現(xiàn)認(rèn)知躍升。余數(shù)除法作為二年級(jí)下冊(cè)的核心內(nèi)容,既是表內(nèi)除法的延伸,也是后續(xù)學(xué)習(xí)多位數(shù)除法、周期問題的基礎(chǔ)。它不僅要求學(xué)生掌握“余數(shù)<除數(shù)”的規(guī)則,更要通過思維訓(xùn)練,讓學(xué)生在“分物—說理—應(yīng)用”的過程中,理解余數(shù)的本質(zhì)意義,發(fā)展邏輯推理能力。以下,我將從“概念建構(gòu)—思維訓(xùn)練—綜合應(yīng)用”三個(gè)維度,系統(tǒng)展開余數(shù)除法的教學(xué)實(shí)踐。01余數(shù)除法的概念建構(gòu):從分物操作到數(shù)學(xué)表達(dá)余數(shù)除法的概念建構(gòu):從分物操作到數(shù)學(xué)表達(dá)二年級(jí)學(xué)生以具體形象思維為主,對(duì)抽象概念的理解需要依托直觀操作。余數(shù)除法的學(xué)習(xí)起點(diǎn)是“分物活動(dòng)”,關(guān)鍵是讓學(xué)生在“分不完”的情境中,自然感知余數(shù)的產(chǎn)生,進(jìn)而建立“被除數(shù)=除數(shù)×商+余數(shù)”的數(shù)學(xué)表達(dá)式。1從“分物游戲”中感知余數(shù)的存在教學(xué)初始,我會(huì)設(shè)計(jì)“分糖果”的真實(shí)情境:“老師帶來13顆水果糖,要分給4個(gè)小朋友,每人分到的數(shù)量要一樣多,怎么分?”學(xué)生通過動(dòng)手?jǐn)[圓片(或畫示意圖),會(huì)經(jīng)歷以下過程:(1)第一次分:每人分1顆,用掉4顆,剩下9顆;(2)第二次分:每人再分1顆,用掉4顆,剩下5顆;(3)第三次分:每人再分1顆,用掉4顆,剩下1顆;此時(shí),剩下的1顆不夠再給每個(gè)小朋友分1顆了,學(xué)生自然會(huì)說:“分完3次后,還剩1顆?!边@時(shí),我會(huì)引導(dǎo)學(xué)生用數(shù)學(xué)語言記錄這個(gè)過程:“13顆糖,每人分3顆,分給4人,用了12顆,剩下1顆。”并板書算式:13÷4=3(顆)……1(顆)。通過“分—說—寫”的聯(lián)動(dòng),學(xué)生初步理解“余數(shù)是分完后剩下的、不夠再分一份的數(shù)”。2在對(duì)比中明確“余數(shù)<除數(shù)”的規(guī)則為了讓學(xué)生理解“余數(shù)必須小于除數(shù)”的必然性,我會(huì)設(shè)計(jì)對(duì)比實(shí)驗(yàn):用14顆糖分給4個(gè)小朋友,15顆糖分給4個(gè)小朋友,16顆糖分給4個(gè)小朋友,分別計(jì)算余數(shù)。學(xué)生通過操作會(huì)發(fā)現(xiàn):14÷4=3……2(剩2顆,2<4)15÷4=3……3(剩3顆,3<4)16÷4=4……0(剛好分完,余0)接著追問:“如果余數(shù)是4,會(huì)發(fā)生什么?”學(xué)生通過嘗試會(huì)發(fā)現(xiàn):如果余數(shù)是4,說明還能再給每個(gè)小朋友分1顆,商應(yīng)該加1,余數(shù)變?yōu)?。由此得出結(jié)論:余數(shù)是“不夠再分一份”的數(shù),因此余數(shù)必須小于除數(shù)。這一過程中,學(xué)生不僅記住了規(guī)則,更理解了規(guī)則背后的邏輯——余數(shù)是“分物活動(dòng)”的自然結(jié)果,而非人為規(guī)定。3從具體到抽象:建立余數(shù)除法的數(shù)學(xué)模型當(dāng)學(xué)生通過多次分物操作積累了足夠的感性經(jīng)驗(yàn)后,我會(huì)引導(dǎo)他們脫離實(shí)物,用“圈一圈”“畫一畫”的方式表示余數(shù)除法。例如:“有22朵花,每5朵扎成一束,可以扎幾束?還剩幾朵?”學(xué)生可以用○代表花,每5個(gè)圈一組,圈4組后剩下2個(gè),對(duì)應(yīng)算式22÷5=4……2。通過“實(shí)物操作—圖形表征—符號(hào)表達(dá)”的遞進(jìn),學(xué)生逐步建立余數(shù)除法的數(shù)學(xué)模型,完成從具體思維到抽象思維的過渡。02余數(shù)除法的思維訓(xùn)練:從規(guī)則應(yīng)用到推理創(chuàng)新余數(shù)除法的思維訓(xùn)練:從規(guī)則應(yīng)用到推理創(chuàng)新余數(shù)除法的思維訓(xùn)練不能停留在“會(huì)計(jì)算”,更要讓學(xué)生“會(huì)思考”。我將其分為三個(gè)層次:基于規(guī)則的辨析、基于關(guān)系的推理、基于問題的創(chuàng)造,逐步提升思維的嚴(yán)謹(jǐn)性、靈活性和深刻性。1基于規(guī)則的辨析:突破“余數(shù)>除數(shù)”的常見誤區(qū)教學(xué)中我發(fā)現(xiàn),學(xué)生最易犯的錯(cuò)誤是余數(shù)大于或等于除數(shù)。例如計(jì)算17÷3時(shí),可能得出17÷3=4……5(余數(shù)5>除數(shù)3)。為了突破這一誤區(qū),我設(shè)計(jì)了“找錯(cuò)小偵探”活動(dòng):(1)出示錯(cuò)誤算式:19÷5=3……4(正確)、21÷6=3……3(正確)、14÷3=3……5(錯(cuò)誤);(2)學(xué)生用兩種方法驗(yàn)證:一是用“除數(shù)×商+余數(shù)”是否等于被除數(shù)(3×3+5=14,雖然結(jié)果正確,但余數(shù)5>3,說明商小了);二是用分物操作模擬(14顆糖分給3人,每人分3顆用掉9顆,剩下5顆還能再分1顆給每人,商應(yīng)為4,余數(shù)1)。通過“找錯(cuò)—說理—修正”的過程,學(xué)生不僅能識(shí)別錯(cuò)誤,更能從“分物邏輯”和“算式驗(yàn)證”兩個(gè)角度解釋錯(cuò)誤原因,強(qiáng)化對(duì)“余數(shù)<除數(shù)”規(guī)則的深度理解。2基于關(guān)系的推理:逆向思考與變量分析余數(shù)除法中,被除數(shù)、除數(shù)、商、余數(shù)四個(gè)量存在“被除數(shù)=除數(shù)×商+余數(shù)”的關(guān)系。利用這一關(guān)系設(shè)計(jì)逆向問題,能有效培養(yǎng)學(xué)生的推理能力。例1(已知除數(shù)、商、余數(shù),求被除數(shù)):“有一堆蘋果,每7個(gè)裝一袋,裝了5袋后還剩3個(gè),一共有多少個(gè)蘋果?”學(xué)生需要理解“5袋”對(duì)應(yīng)商5,“剩3個(gè)”對(duì)應(yīng)余數(shù)3,因此被除數(shù)=7×5+3=38。例2(已知被除數(shù)、除數(shù)、余數(shù),求商):“25個(gè)橘子,每6個(gè)裝一盤,裝完后還剩1個(gè),裝了幾盤?”學(xué)生需要逆向思考:25-1=24(個(gè))是剛好裝完的數(shù)量,24÷6=4(盤),因此商是4。例3(已知被除數(shù)、商、余數(shù),求除數(shù)):“一個(gè)數(shù)除以另一個(gè)數(shù),商是4,余數(shù)是2,被除數(shù)是26,求除數(shù)。”這是難度更高的推理題,學(xué)生需要利用“除數(shù)×商+余數(shù)=被除數(shù)”,變形為“除數(shù)=(被除數(shù)-余數(shù))÷商”,即(26-2)÷4=6,因此除數(shù)是6。2基于關(guān)系的推理:逆向思考與變量分析通過這三類問題,學(xué)生不僅掌握了四個(gè)量的關(guān)系,更學(xué)會(huì)了“從已知推未知”的邏輯方法,思維的條理性顯著提升。3基于問題的創(chuàng)造:開放情境與跨學(xué)科融合為了培養(yǎng)學(xué)生的創(chuàng)新思維,我會(huì)設(shè)計(jì)開放型問題,讓學(xué)生自己設(shè)計(jì)余數(shù)除法的情境。例如:“用‘20÷6=3……2’編一個(gè)數(shù)學(xué)故事,除了分糖果,還可以分什么?”學(xué)生的答案精彩紛呈:分跳繩:20根跳繩,每6根分給一個(gè)班,分給3個(gè)班后還剩2根;擺花盆:20盆花,每6盆擺成一行,擺了3行后還剩2盆;時(shí)間問題:20分鐘做口算題,每6分鐘完成一組,做了3組后還剩2分鐘。此外,結(jié)合生活中的周期現(xiàn)象(如星期、季節(jié)),可以設(shè)計(jì)跨學(xué)科問題:“今天是星期一,23天后是星期幾?”學(xué)生需要理解一周7天是一個(gè)周期,23÷7=3……2,余數(shù)是2,因此星期一+2天=星期三。這類問題將余數(shù)除法與時(shí)間周期結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,思維的綜合性得到發(fā)展。03余數(shù)除法的綜合應(yīng)用:從課堂練習(xí)到生活實(shí)踐余數(shù)除法的綜合應(yīng)用:從課堂練習(xí)到生活實(shí)踐數(shù)學(xué)的最終目的是解決實(shí)際問題。我通過“基礎(chǔ)練習(xí)—變式練習(xí)—實(shí)踐任務(wù)”三級(jí)階梯,讓學(xué)生在應(yīng)用中深化理解,感受數(shù)學(xué)與生活的聯(lián)系。1基礎(chǔ)練習(xí):鞏固計(jì)算與規(guī)則01在右側(cè)編輯區(qū)輸入內(nèi)容基礎(chǔ)練習(xí)的設(shè)計(jì)要緊扣教材,覆蓋“直接計(jì)算”“判斷余數(shù)是否正確”“根據(jù)情境列式”三類題型。例如:02在右側(cè)編輯區(qū)輸入內(nèi)容(1)直接計(jì)算:18÷5=□……□,25÷7=□……□;03在右側(cè)編輯區(qū)輸入內(nèi)容(2)判斷對(duì)錯(cuò):19÷3=5……4(×),22÷4=5……2(√);04通過這些練習(xí),學(xué)生鞏固了余數(shù)除法的計(jì)算方法,強(qiáng)化了“余數(shù)<除數(shù)”的規(guī)則意識(shí)。(3)情境列式:“34個(gè)同學(xué)去劃船,每條船坐5人,需要幾條船?還剩幾個(gè)同學(xué)?”列式為34÷5=6……4。2變式練習(xí):提升思維的靈活性變式練習(xí)的關(guān)鍵是改變問題的呈現(xiàn)方式,打破思維定式。例如:例1(隱藏除數(shù)):“媽媽買了一些巧克力,分給3個(gè)小朋友,每人分4塊后還剩2塊,媽媽買了多少塊巧克力?”這里除數(shù)是3(小朋友數(shù)量),商是4,余數(shù)是2,被除數(shù)=3×4+2=14。例2(需要調(diào)整商):“有28個(gè)面包,每6個(gè)裝一盒,至少需要幾個(gè)盒子?”學(xué)生容易直接寫28÷6=4……4,認(rèn)為需要4個(gè)盒子,但實(shí)際剩下的4個(gè)面包也需要1個(gè)盒子,因此需要4+1=5個(gè)盒子。這類“進(jìn)一法”問題,讓學(xué)生理解數(shù)學(xué)計(jì)算需要結(jié)合實(shí)際情境調(diào)整答案。2變式練習(xí):提升思維的靈活性例3(余數(shù)的實(shí)際意義):“用25米布做衣服,每件衣服用3米布,最多可以做幾件衣服?”這里余數(shù)1米不夠做一件衣服,因此商是8(25÷3=8……1),需要“去尾法”取商。通過對(duì)比“進(jìn)一法”和“去尾法”,學(xué)生學(xué)會(huì)根據(jù)實(shí)際問題選擇合理的解決方案,思維的嚴(yán)謹(jǐn)性和靈活性同步提升。3實(shí)踐任務(wù):走向真實(shí)生活的數(shù)學(xué)我會(huì)布置“生活中的余數(shù)除法”實(shí)踐任務(wù),讓學(xué)生用數(shù)學(xué)眼光觀察生活。例如:調(diào)查家庭一周的雞蛋消耗:“媽媽買了30個(gè)雞蛋,每天吃4個(gè),能吃幾天?還剩幾個(gè)?”統(tǒng)計(jì)班級(jí)圖書角的圖書:“圖書角有45本故事書,每7本擺一層,能擺幾層?還剩幾本?”觀察節(jié)日裝飾:“春節(jié)掛燈籠,每串掛5個(gè),23個(gè)燈籠可以掛幾串?還剩幾個(gè)?”學(xué)生通過記錄、計(jì)算、分享,發(fā)現(xiàn)余數(shù)除法在生活中無處不在,真正體會(huì)到“數(shù)學(xué)有用”。有個(gè)學(xué)生在分享中說:“原來媽媽買水果時(shí)算夠不夠分,也是用余數(shù)除法!”這種“數(shù)學(xué)與生活聯(lián)結(jié)”的體驗(yàn),比單純的計(jì)算練習(xí)更能激發(fā)學(xué)習(xí)興趣。結(jié)語:余數(shù)除法的本質(zhì)是“分物思維”的數(shù)學(xué)化表達(dá)3實(shí)踐任務(wù):走向真實(shí)生活的數(shù)學(xué)回顧整個(gè)教學(xué)過程,余數(shù)除法的核心不是機(jī)械的計(jì)算步驟,而是“分物活動(dòng)”中“盡可能平均分—剩下不夠分”的思維過程。通過操作感知、對(duì)比辨析、推理應(yīng)用,學(xué)生不僅掌握了“余數(shù)<除數(shù)”的規(guī)則,更發(fā)展了“有序分物—記錄結(jié)果—解釋意義”的數(shù)學(xué)思維。作為教師,我始終相信:數(shù)學(xué)思維的種子,要在具體情境中萌發(fā);數(shù)學(xué)能力的生長(zhǎng),要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣州鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試模擬測(cè)試卷附答案解析
- 2024年寶雞三和職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬測(cè)試卷附答案解析
- 2023年廣東省江門市單招職業(yè)傾向性測(cè)試題庫附答案解析
- 2025年新疆克拉瑪依市單招職業(yè)適應(yīng)性測(cè)試模擬測(cè)試卷附答案解析
- 2025年天津渤海職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬測(cè)試卷附答案解析
- 2024年甘肅衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試模擬測(cè)試卷附答案解析
- 2024年四川托普信息技術(shù)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬測(cè)試卷附答案解析
- 重彩棒熊貓課件
- 冷庫消防安全規(guī)范
- 校園消防設(shè)施維護(hù)保養(yǎng)合同規(guī)范
- 投資者關(guān)系部經(jīng)理筆試題及解析
- 《當(dāng)代廣播電視概論(第3版)》全套教學(xué)課件
- 防水補(bǔ)漏合同協(xié)議
- 中華人民共和國(guó)史期末復(fù)習(xí)
- 加油站安全現(xiàn)狀評(píng)價(jià)匯報(bào)
- 信陽師范大學(xué)《倫理學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 小學(xué)2024年秋季學(xué)生1530安全教育記錄表(全學(xué)期)
- 中國(guó)普通食物營(yíng)養(yǎng)成分表(修正版)
- ISO15614-1 2017 金屬材料焊接工藝規(guī)程及評(píng)定(中文版)
- 低壓線路的安裝、運(yùn)行及維護(hù)
- 表-柴油的理化性質(zhì)及危險(xiǎn)特性
評(píng)論
0/150
提交評(píng)論