版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AHP法中平均隨機(jī)一致性指標(biāo)的算法及MATLAB實現(xiàn)
一、本文概述
層次分析法(AnalyticHierarchyProcess,AHP)是一種定性
與定量相結(jié)合的、系統(tǒng)化、層次化的決策分析方法。它由美國運(yùn)籌學(xué)
家托馬斯L薩蒂(ThomasL.Saaty)在20世紀(jì)70年代初期提出,
主要用于復(fù)雜決策問題的解決。在AHP中,平均隨機(jī)一致性指標(biāo)
(RandomConsistencyIndex,RCI)是一個重要的概念,用于評估
判斷矩陣的一致性程度。一個判斷矩陣的一致性越好,其權(quán)重分配的
合理性就越高,從而使得決策結(jié)果更加可靠。
本文的主要目的是探討A11P法中平均隨機(jī)一致性指標(biāo)的算法,并
基于MATLAB軟件實現(xiàn)這一算法。通過本文,讀者將能夠理解平均隨
機(jī)一致性指標(biāo)的計算方法,并學(xué)會如何在MATLAB中實現(xiàn)這一計算。
這將有助于在實際決策過程中更準(zhǔn)確地評估判斷矩陣的一致性,從而
提高決策的質(zhì)量和效率。本文的結(jié)構(gòu)安排如下:首先介紹AHP法的基
本原理和平均隨機(jī)一致性指標(biāo)的概念接著詳細(xì)闡述平均隨機(jī)一致性
指標(biāo)的算法然后展示如何在MATLAB中實現(xiàn)這一算法最后通過一個實
例來說明算法的應(yīng)用和效果。
二、法的理論基礎(chǔ)
層次分析法(AnalyticHierarchyProcess,簡稱AHP)是一種
定性和定量相結(jié)合的、系統(tǒng)化、層次化的決策分析方法。該方法由美
國運(yùn)籌學(xué)家托馬斯L薩蒂(ThomasL.Saaty)于20世紀(jì)70年代初
期提出,主要用于復(fù)雜決策問題的解決。AHP法的核心是將決策問題
分解為目標(biāo)、準(zhǔn)則、方案等多個層次,通過成對比較的方式確定各因
素的相對重要性,并在此基礎(chǔ)上進(jìn)行綜合排序和決策。
在AHP法中,平均隨機(jī)一致性指標(biāo)(RandomConsistencyIndex,
簡稱RCI)是一個重要的概念。它是用來衡量判斷矩陣的一致性程度
的一個指標(biāo)。判斷矩陣是AHP法中的一個關(guān)鍵元素,它反映了決策者
在不同因素之間進(jìn)行成對比較時的偏好。理想情況下,判斷矩陣應(yīng)該
完全一致,即成對比較的結(jié)果在邏輯上一致。在實際操作中,由于各
種因素的影響,判斷矩陣往往存在一定程度的不一致性。平均隨機(jī)一
致性指標(biāo)就是為了度量這種不一致性程度而引入的。
平均隨機(jī)一致性指標(biāo)的計算基于隨機(jī)一致性比率(Random
ConsistencyRatio,簡稱RCR),其計算公式為:
C1是一致性指標(biāo)(ConsistencyIndex),R1是平均隨機(jī)一致性
指標(biāo)(RandomConsistencyIndex)。CI的計算公式為:
[CIfrac{lambda_{text{max}}n}{n1}]
(lambda_{text{max}})是判斷矩陣的最大特征值,n是判斷矩陣
的階數(shù)。
RI的值是根據(jù)大量的隨機(jī)矩陣計算得出的,它與矩陣的階數(shù)有
關(guān)。不同階數(shù)的矩陣有不同的RI值。當(dāng)RCR的值小于1時,一般認(rèn)
為判斷矩陣的一致性是可以接受的。
在MATLAB中實現(xiàn)AHP法中的平均隨機(jī)一致性指標(biāo)的計算,首先
需要構(gòu)建判斷矩陣,然后計算該矩陣的最大特征值和對應(yīng)的特征向量,
接著計算CI和RI,最后根據(jù)RCR的值判斷判斷矩陣的一致性。這一
過程可以通過編寫MATLAB腳本或函數(shù)來實現(xiàn),從而為決策者提供一
個量化的工具來評估和優(yōu)化其決策過程。
三、平均隨機(jī)一致性指標(biāo)的算法分析
平均隨機(jī)一致性指標(biāo)(RCI)是AHP法中用于判斷一致性比率
(ConsistencyRatio,CR)的一個重要參數(shù)。在AHP法中,通過構(gòu)
建層次結(jié)構(gòu)模型、成對比較矩陣、計算權(quán)重和一致性檢驗等步驟來評
估和選擇決策方案。一致性檢驗是確保成對比較矩陣邏輯一致性的關(guān)
鍵環(huán)節(jié)。RCI的引入,旨在通過比較實際一致性指標(biāo)與隨機(jī)一致性指
標(biāo)來評估一致性程度,從而提高決策的準(zhǔn)確性和可信度。
成對比較矩陣:首先構(gòu)建成對比較矩陣,該矩陣反映了決策元素
之間的相對重要性。
計算一致性指標(biāo)(CI):通過計算最大特征值和特征向量,得到
四、實現(xiàn)方法
介紹AHP法中的平均隨機(jī)一致性指標(biāo):解釋其在AHP中的重要性,
即如何通過一致性比率(ConsistencyRatio,CR)來評估判斷矩陣
的一致性。
平均隨機(jī)一致性指標(biāo)的定義:闡述RCI的計算公式及其在評估一
致性中的作用。
步驟2:特征值和特征向量的計算:使用MATLAB內(nèi)置函數(shù)來計
算判斷矩陣的特征值和特征向量.
步驟4:平均隨機(jī)一致性指標(biāo)的應(yīng)用:選擇合適的平均隨機(jī)一致
性指標(biāo)(RI)與CI進(jìn)行比較,以計算CR。
結(jié)果驗證:討論如何驗證計算結(jié)果的準(zhǔn)確性,例如通過與傳統(tǒng)方
法或已知結(jié)果的比較。
總結(jié)實現(xiàn)方法:回顧MATLAB實現(xiàn)AHP中平均隨機(jī)一致性指標(biāo)的
過程。
討論潛在的應(yīng)用和改進(jìn):提出算法在實際應(yīng)用中的潛在用途,以
及未來可能的改進(jìn)方向。
在撰寫具體內(nèi)容時,我們將確保每一部分都詳細(xì)且準(zhǔn)確地反映了
算法的實現(xiàn)過程,并提供足夠的細(xì)節(jié),以便讀者能夠理解和復(fù)現(xiàn)這一
過程。同時,我們將確保MATLAB代碼的正確性和可執(zhí)行性,使其成
為一個實用的工具。
五、案例分析
平均隨機(jī)一致性指標(biāo)(CR)是層次分析法(AHP)中的一個重要
概念,用于衡量一致性比率(CR)和隨機(jī)一致性指數(shù)(RI)oCR的
計算公式為:
[CIfrac(lambda_{text{max}}n]{n1}]
[lambda_(text{max}}]是成對比較矩陣的最大特征值,n是
成對比較矩陣的階數(shù)。
RI(隨機(jī)一致性指數(shù))是一個根據(jù)隨機(jī)矩陣的平均一致性指數(shù)計
算得出的數(shù)值,它是一個根據(jù)矩陣大小預(yù)先計算好的值。
Revalues[0,0,58,90,12,24,32,41,45]
這只是一個基本的實現(xiàn)框架,實際應(yīng)用中可能需要對輸入的成對
比較矩陣進(jìn)行規(guī)范化處理,以及對CR值進(jìn)行進(jìn)一步的分析和驗證。
六、結(jié)論與展望
在撰寫結(jié)論部分時,應(yīng)該總結(jié)研究的主要發(fā)現(xiàn),強(qiáng)調(diào)研究的貢獻(xiàn),
并簡要回顧文章的核心觀點(diǎn)。結(jié)論應(yīng)該清晰、簡潔,能夠讓讀者快速
理解研究的價值和意義。例如:
主要發(fā)現(xiàn):總結(jié)AHP法中平均隨機(jī)一致性指標(biāo)算法的關(guān)鍵發(fā)現(xiàn),
包括算法的有效性、準(zhǔn)確性以及與現(xiàn)有方法相比的優(yōu)勢。
研究貢獻(xiàn):闡述研究對于理解和應(yīng)用AHP方法的貢獻(xiàn),以及在
MATLAB實現(xiàn)方面的創(chuàng)新點(diǎn)。
實際應(yīng)用:討論研究結(jié)果在實際問題中的應(yīng)用前景,比如在決策
支持系統(tǒng)中的潛在用途。
研究限制:誠實地指出研究的局限性,比如算法可能存在的假設(shè)、
數(shù)據(jù)集的局限或是HATLAB實現(xiàn)的特定要求。
在展望部分,應(yīng)該提出未來研究的方向,探討如何克服當(dāng)前研究
的局限性,以及可能的改進(jìn)和擴(kuò)展。例如:
未來研究方向:提出未來研究可以探索的新問題,如算法的進(jìn)一
步優(yōu)化、在不同領(lǐng)域的應(yīng)用研究等。
技術(shù)改進(jìn):討論可能的技術(shù)改進(jìn),例如通過并行計算提高算法效
率,或是采用更先進(jìn)的編程技術(shù)優(yōu)化MATLAB實現(xiàn)。
跨學(xué)科應(yīng)用:探索AHP方法與其他學(xué)科結(jié)合的可能性,比如與機(jī)
器學(xué)習(xí)算法的融合,或是在大數(shù)據(jù)分析中的應(yīng)用。
社會影響:可以討論研究對社會的潛在影響,如提高決策質(zhì)量、
促進(jìn)可持續(xù)發(fā)展等。
參考資料:
平均指標(biāo)亦稱“平均數(shù)”。同質(zhì)總體內(nèi)各單位某一數(shù)量標(biāo)志的一
般水平。平均數(shù)的特點(diǎn)是對總體各單位之間標(biāo)志值的差異抽象化,用
一個數(shù)字顯示其一般水平。它可用來比較不同時間、地點(diǎn)或部門之間
同類現(xiàn)象水平的高低,分析現(xiàn)象間的相互關(guān)系,估計推算其他有關(guān)指
標(biāo),如用樣本平均每畝產(chǎn)量乘收獲面積估算農(nóng)作物總產(chǎn)量。現(xiàn)象的同
質(zhì)性是計算平均數(shù)的前提條件,只有在同質(zhì)總體內(nèi)才能計算平均數(shù)。
把平均數(shù)與分組法結(jié)合運(yùn)用,用組平均數(shù)補(bǔ)充總平均數(shù),對認(rèn)識客觀
現(xiàn)象有重要作用。在運(yùn)用平均數(shù)時,還要注意利用分配數(shù)列和典型資
料來加以補(bǔ)充。由于掌握資料和研究任務(wù)不同,平均數(shù)有算術(shù)平均數(shù),
調(diào)和平均數(shù),幾何平均數(shù)、眾數(shù)和中位數(shù)等五種不同計算形式。
平均指標(biāo)可以是同一時間的同類社會經(jīng)濟(jì)現(xiàn)象的一般水平,稱為
靜態(tài)平均數(shù),也可以是不同時間的同類社會經(jīng)濟(jì)現(xiàn)象的一般水平,稱
為動態(tài)平均數(shù).
平均指標(biāo)在認(rèn)識社會經(jīng)濟(jì)現(xiàn)象總體數(shù)量特征方面有重要作用,得
到廣泛應(yīng)用。
平均指標(biāo)經(jīng)常用來進(jìn)行同類現(xiàn)象在不同空間、不同時間條件下的
對比分析,從而反映現(xiàn)象在不同地區(qū)之間的差異,揭示現(xiàn)象在不同時
間之間的發(fā)展趨勢。
平均指標(biāo),是同類社會經(jīng)濟(jì)現(xiàn)象總體內(nèi)各單位某一數(shù)量標(biāo)志在一
定時間、地點(diǎn)和條件下數(shù)量差異抽象化的代表性水平指標(biāo),其數(shù)值表
現(xiàn)為平均數(shù)。平均指標(biāo)是社會經(jīng)濟(jì)統(tǒng)計中常用的綜合指標(biāo)之一,具有
很重要的作用,但是如果應(yīng)用不當(dāng),平均指標(biāo)可能會給我們帶來一些
“困惑”、“假象”,使用時要注意以下原則:
就是社會經(jīng)濟(jì)性現(xiàn)象的各個單位在被平均的標(biāo)志上具有同類性。
各單位之間的差別,僅僅表現(xiàn)在數(shù)量上,被平均的只是量的差異。馬
克思指出:“平均量始終只是同種的很多不同的個別量的平均數(shù)。如
果各單位在類型上是異質(zhì)的,特別是從社會關(guān)系來說存在著根本差別,
平均數(shù)不僅不能說明事物的本質(zhì)和規(guī)律性,反而會歪曲事實,掩蓋真
相,抹煞現(xiàn)象之間的本質(zhì)差別,它只能是“虛構(gòu)”的平均數(shù)。所以科
學(xué)的平均指標(biāo)應(yīng)建立在分組法的基礎(chǔ)上,借助于分組法來區(qū)分不同性
質(zhì)的總體,然后就同類總體計算和運(yùn)用平均指標(biāo)。
平均指標(biāo)確實能反映某種事物的一般水平,在比較不同空間和時
間上的情況時能消除規(guī)模大小的影響,是衡量其差距的重要指標(biāo)。但
只依據(jù)平均指標(biāo)來評價事物的優(yōu)劣是遠(yuǎn)遠(yuǎn)不夠的。因為總體內(nèi)部各單
位標(biāo)志值具有差異,有高低、大小、多少之別。就總體而言,平均數(shù)
背后隱臧最大值與最小值之間的差距,有的差距不大,有的則相差非
常懸殊??傮w內(nèi)部各單位標(biāo)志值差距懸殊的平均數(shù)就掩蓋著尖銳的矛
盾,讓人們感到不真實。所以,在反映具體問題時,除了列出總平均
指標(biāo)外還應(yīng)把總體內(nèi)部各單位標(biāo)志值中最大值、最小值及其差距擺出
來,要列出平均差異大小和差異的相對程度,即要測定標(biāo)志變異指標(biāo)。
根據(jù)同質(zhì)總體計算的平均數(shù)是總平均數(shù),它說明總體各個單位的
一般水平,在統(tǒng)計分析中有重要作用。僅看總平均數(shù)還不能全面說明
總體特征,因為總體單位之間還存在其他一些性質(zhì)上的差別,有時被
總平均數(shù)所掩蓋。為揭示一些重要差別,還必須注意各單位在性質(zhì)上
的差別對總平均數(shù)的影響作用,即需要按反映重要差別的標(biāo)志把總體
單位分組,計算組平均數(shù),以補(bǔ)充說明總平均數(shù)。
任何事物的發(fā)展都是不平衡的,在同一總體中,既有先進(jìn)部分,
也有后進(jìn)部分,不能滿足于一般狀況。如果在分析研究時,只掌握一
般情況而忽視個別情況,不注意發(fā)現(xiàn)先進(jìn),找出后進(jìn),促使后進(jìn)轉(zhuǎn)化,
就會犯錯誤。所以,為了全面深入地認(rèn)識事物,在應(yīng)用平均數(shù)時,需
要結(jié)合個別典型事物,研究先進(jìn)和落后的典型,發(fā)現(xiàn)新生事物,加以
總結(jié)推廣,推動事物的發(fā)展。
平均數(shù)的重要特征是把總體各單位的數(shù)量差異抽象化,掩蓋了各
單位的數(shù)量差別及分配狀況,要用分配數(shù)列來補(bǔ)充說明平均數(shù)。
平均指標(biāo)按計算和確定的方法不同,分為算術(shù)平均數(shù)、調(diào)和平均
數(shù)、幾何平均數(shù)、眾數(shù)和中位數(shù)。前三種平均數(shù)是根據(jù)總體各單位的
標(biāo)志值計算得到的平均值,稱作數(shù)值平均數(shù)。眾數(shù)和中位數(shù)是根據(jù)標(biāo)
志值在分配數(shù)列中的位置確定的,稱為位置平均數(shù)。
算術(shù)平均數(shù)也成均值,是最常用的平均指標(biāo)。它的基本公式形式
是總體標(biāo)志總量除以總體單位總量。在實際工作中,由于資料的不同,
算術(shù)平均數(shù)有兩種計算形式:即簡單算術(shù)平均數(shù)和加權(quán)算術(shù)平均數(shù)。
⑴簡單算術(shù)平均數(shù)適用于未分組的統(tǒng)計資料,如果已知各單位標(biāo)
志值和總體單位數(shù),可采用簡單算術(shù)平均數(shù)方法計算。
⑵加權(quán)算術(shù)平均數(shù)適用于分組的統(tǒng)計資料,如果已知各組的變量
值和變量值出現(xiàn)的次數(shù),則可采用加權(quán)算術(shù)平均數(shù)計算。
加權(quán)算術(shù)平均數(shù)的大小受兩個因素的影響:其一是受變量值大小
的影響。其二是各組次數(shù)占總次數(shù)比重的影響。在計算平均數(shù)時,由
于出現(xiàn)次數(shù)多的標(biāo)志值對平均數(shù)的形成影響大些,出現(xiàn)次數(shù)少的標(biāo)志
值對平均數(shù)的形成影響小些,因此就把次數(shù)稱為權(quán)數(shù)。在分組數(shù)列的
條件下,當(dāng)各組標(biāo)志值出現(xiàn)的次數(shù)或各組次數(shù)所占比重均相等時,權(quán)
數(shù)就失去了權(quán)衡輕重的作用,這時用加權(quán)算術(shù)平均數(shù)計算的結(jié)果與用
簡單算術(shù)平均數(shù)計算的結(jié)果相同。
調(diào)和平均數(shù)是總體各單位標(biāo)志值倒數(shù)的算術(shù)平均數(shù)的倒數(shù),又稱
為倒數(shù)平均數(shù),由簡單調(diào)和平均數(shù)和加權(quán)調(diào)和平均數(shù)。
幾何平均數(shù)是n個變量值乘積的n次方根。在統(tǒng)計中,幾何平均
數(shù)常用于計算平均速度和平均比率。幾何平均數(shù)也有簡單平均和加權(quán)
平均兩種形式。
眾數(shù)是指總體中出現(xiàn)次數(shù)最多的標(biāo)志值。眾數(shù)也是一種位置平均
數(shù)。在實際工作中往往可以代表現(xiàn)象的一般水平,如市場上某種商品
大多數(shù)的成交價格,多數(shù)人的服裝和鞋帽尺寸等,都是眾數(shù)。但只有
在總體單位數(shù)多且有明顯的集中趨勢時,才可計算眾數(shù)。
將總體各單位的標(biāo)志按大小順序排列,處于中間位置的標(biāo)志值就
是中位數(shù)。由于中位數(shù)是位置平均數(shù),不受極端值的影響,在總體標(biāo)
志值差異很大的情況下,中位數(shù)具有很強(qiáng)的代表性。
算術(shù)平均數(shù)、中位數(shù)和眾數(shù)都是反映數(shù)據(jù)分布集中趨勢的平均指
標(biāo),他們各具特點(diǎn):
算術(shù)平均數(shù)是根據(jù)所有數(shù)據(jù)計算的,中位數(shù)和眾數(shù)是根據(jù)數(shù)據(jù)分
布形狀和位置確定的;算術(shù)平均數(shù)只適用于定量的數(shù)據(jù),中位數(shù)適用
于定量和定序的數(shù)據(jù),眾數(shù)適用于定量、定序和定類的數(shù)據(jù),但有可
能存在沒有眾數(shù)或多個眾數(shù)的情況;算術(shù)平均數(shù)易受到極端值的影響,
有極端變量值時,用中位數(shù)和眾數(shù)作為代表值更好。
眾數(shù)、中位數(shù)和算術(shù)平均數(shù)三者也存在一定的數(shù)量關(guān)系。在鐘形
分布中,眾數(shù)是分布最高峰對應(yīng)的變量值,一般中位數(shù)比較適中,算
術(shù)平均數(shù)受極端變量值的影響,可能偏大也可能偏小。
計算和應(yīng)用平均指標(biāo)必須注意現(xiàn)象總體的同質(zhì)性。只有在同質(zhì)總
體的基礎(chǔ)上計算和應(yīng)用平均指標(biāo),才有真是的社會經(jīng)濟(jì)意義。如果根
據(jù)不同性質(zhì)總體的數(shù)據(jù)資料計算平均指標(biāo),就會掩蓋事物的本質(zhì)差別,
得到的平均數(shù)是虛構(gòu)的平均數(shù),不能真實反映現(xiàn)象的一般水平。
語音增強(qiáng)技術(shù)是一種能夠降低背景噪聲,提高語音信號質(zhì)量的重
要技術(shù)。隨著人工智能和機(jī)器學(xué)習(xí)的發(fā)展,語音增強(qiáng)算法得到了廣泛
的研究和應(yīng)用。本文將介紹語音增強(qiáng)的基本原理,以及幾種常見的語
音增強(qiáng)算法,并給出MATLAB實現(xiàn)。
譜減法是一種簡單而有效的語音增強(qiáng)算法,其基本原理是在頻域
或時域?qū)φZ音信號進(jìn)行減噪。通過估計背景噪聲的功率譜,然后從語
音信號的功率譜中減去噪聲部分,可以得到較為純凈的語音信號。譜
減法的優(yōu)點(diǎn)是實現(xiàn)簡單,但對噪聲的估計精度要求較高。
基于濾波器的語音增強(qiáng)算法主要通過設(shè)計濾波器來抑制噪聲。常
見的濾波器包括Wiener濾波器、中值濾波器和形態(tài)學(xué)濾波器等°這
些濾波器能夠根據(jù)語音信號和噪聲的特性,對信號進(jìn)行濾波處理,從
而提高語音信號的質(zhì)量。
基于機(jī)器學(xué)習(xí)的語音增強(qiáng)算法是一種較為先進(jìn)的算法,其通過訓(xùn)
練大量的語音數(shù)據(jù),學(xué)習(xí)出語音和噪聲之間的關(guān)系,從而實現(xiàn)語音增
強(qiáng)。常見的機(jī)器學(xué)習(xí)算法包括深度學(xué)習(xí)、支持向量機(jī)和隱馬爾可夫模
型等。這些算法能夠更好地處理復(fù)雜的噪聲環(huán)境,提高語音信號的質(zhì)
量。
MATLAB是一種廣泛應(yīng)用于信號處理和機(jī)器學(xué)習(xí)的編程語言。下
面我們將介紹如何使用MATLAB實現(xiàn)譜減法和基于濾波器的語音增強(qiáng)
算法。
在MATLAB中,我們可以使用內(nèi)置的函數(shù)spectralg來實現(xiàn)譜減
法。該函數(shù)可以計算語音信號的功率譜,并從功率譜中減去噪聲部分,
從而得到較為純凈的語音信號。具體實現(xiàn)代碼如下:
x,fs]=audioreadspeech,wav*);%讀取語音信號
n,fs]=audioread(Jnoise,wav*);%讀取噪聲信號
在MATLAB中,我們可以使用內(nèi)置的函數(shù)filter來實現(xiàn)基于濾波
器的語音增強(qiáng)算法。例如,我們可以使用中值濾波器來抑制噪聲,具
體實現(xiàn)代碼如下:
x,fs]=audioread(*speech.wavJ);%讀取語音信號
AHP法是一種常用的多準(zhǔn)則決策分析方法,其中平均隨機(jī)一致性
指標(biāo)(AverageRandomConsistencyIndex,ARCI)是衡量判斷矩陣
一致性的重要指標(biāo)。本文將介紹ARCI算法的原理和步驟,并給出
MATLAB實現(xiàn)方法。
ARCT算法是通過將判斷矩陣中的元素與一致性隨機(jī)矩陣中的元
素進(jìn)行比較,來衡量判斷矩陣的一致性。一致性隨機(jī)矩陣是指在元素
為1的情況下,其他元素在(1/n,1)區(qū)間內(nèi)隨機(jī)取值的矩陣,其中n
為判斷矩陣的維數(shù)。ARC1算法的基本步驟如下:
對于給定的判斷矩陣A,計算其最大特征值Xmax及相應(yīng)的特征
向量Xo
將特征向量X歸一化處理,得到一致性向量二(xl/Exl,X2/L
x2,...,xn/Exn)。
對于一致性向量,計算其與一致性隨機(jī)矩陣最大特征值對應(yīng)的特
征向量的絕對值差I(lǐng)-Y|=max|xi-yi|,其中Y為一致性隨機(jī)矩陣
的特征向量。
如果ARCIG,則判斷矩陣一致性較好;否則,需要調(diào)整判斷矩
陣的元素取值。
function[arci,lambda_max,,Y]=arcicalc(A)
%ARCIalgorithmtocalculateaveragerandomconsistency
index
%output:arci-averagerandomconsistencyindex
%lambdamax-maximumeigenvalue
%-normalizedeigenvector
%Y-normalizedeigenvectorofrandommatrix
n=size(A,1);%dimensionofjudgmentmatrix
lambda_max=max(eig(A));%calculatemaximumeigenvalue
=eig(A)==lambdamax;%geteigenvectorcorrespondingto
maximumeigenvalue
=/sum();%normalizeeigenvector
Y=rand(n,1)/sqrt(sum(rand(n,1)));%generaterandom
vectorandnormalizeit
arci=norm(-Y)/(n-1);%calculateARCIindex
在上面的代碼中,我們首先定義了一個名為arci_calc的函數(shù),
該函數(shù)輸入判斷矩陣A作為參數(shù),并輸出ARCT值、最大特征值和一
致性向量、Y。函數(shù)實現(xiàn)的主體部分是ARCI算法的基本步驟:計算最
大特征值和相應(yīng)的特征向量、歸一化特征向量得到一致性向量、計算
ARC1指標(biāo)。我們使用MATLAB內(nèi)置的eig函數(shù)來計算判斷矩陣的特征
值和特
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄭州城建職業(yè)學(xué)院招聘備考題庫參考答案詳解
- 2025年下半年沐川縣中等職業(yè)學(xué)校公開考核招聘急需緊缺專業(yè)技術(shù)人員模擬筆試試題及答案解析
- 2025福建廈門市集美職業(yè)技術(shù)學(xué)校非在編教師招聘1人模擬筆試試題及答案解析
- 2025年陜西政治中考真題及答案
- 2025年人民交通出版社股份有限公司校園招聘13人備考題庫含答案詳解
- 2025湖南邵陽綏寧縣農(nóng)投產(chǎn)業(yè)投資有限公司招聘見習(xí)大學(xué)生崗位工作人員5人筆試備考重點(diǎn)題庫及答案解析
- 2025下半年安徽工業(yè)經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高層次人才招聘12人模擬筆試試題及答案解析
- 2025年中國安科院安全生產(chǎn)風(fēng)險監(jiān)測預(yù)警中心招聘5人備考題庫參考答案詳解
- 2025新疆兵團(tuán)可克達(dá)拉市廣電網(wǎng)絡(luò)有限責(zé)任公司招聘4人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025年甘肅省臨夏億農(nóng)農(nóng)牧投資有限公司招聘80人筆試參考題庫附帶答案詳解(3卷合一版)
- 煤礦采掘技術(shù)
- 游艇俱樂部圈層策劃方案
- 煤礦用履帶式液壓鉆機(jī)ZDY2300LX說明書-圖文
- 2023年南通啟東市郵政局招考筆試參考題庫(共500題)答案詳解版
- 多媒體系統(tǒng)維保服務(wù)投標(biāo)方案
- JCT890-2017 蒸壓加氣混凝土墻體專用砂漿
- 深圳亞馬遜超級大賣副總制定的亞馬遜運(yùn)營SOP計劃表
- 康復(fù)治療學(xué)Bobath技術(shù)
- 上海市九年義務(wù)教育階段寫字等級考試(一級)硬筆方格收寫紙
- 南部三期污水處理廠擴(kuò)建工程項目環(huán)評報告
- 強(qiáng)磁場對透輝石光催化性能影響的實驗畢業(yè)論文
評論
0/150
提交評論