寧夏民族職業(yè)技術(shù)學(xué)院《智能系統(tǒng)軟件工程》2025-2026學(xué)年第一學(xué)期期末試卷_第1頁
寧夏民族職業(yè)技術(shù)學(xué)院《智能系統(tǒng)軟件工程》2025-2026學(xué)年第一學(xué)期期末試卷_第2頁
寧夏民族職業(yè)技術(shù)學(xué)院《智能系統(tǒng)軟件工程》2025-2026學(xué)年第一學(xué)期期末試卷_第3頁
寧夏民族職業(yè)技術(shù)學(xué)院《智能系統(tǒng)軟件工程》2025-2026學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共2頁寧夏民族職業(yè)技術(shù)學(xué)院《智能系統(tǒng)軟件工程》2025-2026學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論2、在人工智能的文本分類任務(wù)中,類別不平衡是一個常見的問題。假設(shè)一個數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用3、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個能夠自動生成新聞報道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本4、在人工智能的語音識別任務(wù)中,需要克服許多挑戰(zhàn)。假設(shè)要開發(fā)一個能夠在嘈雜環(huán)境中準(zhǔn)確識別語音的系統(tǒng),以下關(guān)于解決噪聲問題的方法,哪一項是不正確的?()A.使用麥克風(fēng)陣列技術(shù),對多個麥克風(fēng)采集的信號進(jìn)行處理,增強(qiáng)有用信號,抑制噪聲B.采用深度學(xué)習(xí)中的降噪自編碼器,對輸入的語音信號進(jìn)行預(yù)處理,去除噪聲C.完全忽略噪聲,只關(guān)注語音的關(guān)鍵特征D.利用語音增強(qiáng)算法,提高語音的信噪比5、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性6、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個能夠監(jiān)測農(nóng)作物病蟲害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項是最有效的?()A.依靠農(nóng)民的人工觀察和報告,將信息輸入系統(tǒng)B.使用無人機(jī)搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲害癥狀時進(jìn)行數(shù)據(jù)采集D.隨機(jī)選擇農(nóng)田的部分區(qū)域進(jìn)行數(shù)據(jù)采集,以節(jié)省成本7、在人工智能的發(fā)展中,倫理和社會問題受到越來越多的關(guān)注。假設(shè)一個城市正在考慮大規(guī)模部署自動駕駛汽車。以下關(guān)于人工智能倫理問題的描述,哪一項是錯誤的?()A.自動駕駛汽車在面臨道德困境時,如選擇保護(hù)乘客還是行人,需要制定明確的決策規(guī)則B.人工智能的應(yīng)用可能導(dǎo)致部分工作崗位的消失,但同時也會創(chuàng)造新的就業(yè)機(jī)會C.只要人工智能技術(shù)能夠帶來便利和效率,就無需考慮其可能產(chǎn)生的倫理和社會影響D.數(shù)據(jù)隱私和安全是人工智能應(yīng)用中需要重點(diǎn)關(guān)注的倫理問題,需要采取措施保護(hù)用戶的個人信息8、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性9、人工智能中的自動機(jī)器學(xué)習(xí)(AutoML)旨在自動化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動機(jī)器學(xué)習(xí)的描述,哪一項是錯誤的?()A.AutoML可以自動搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗豐富的數(shù)據(jù)科學(xué)家手動構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性10、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢是?()A.對姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性11、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過估計什么來進(jìn)行決策?()A.狀態(tài)價值B.動作價值C.策略D.獎勵12、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來,以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡單快速,但對復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過度分割C.基于邊緣檢測的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果13、人工智能中的可解釋性是一個重要的研究方向。假設(shè)要解釋一個深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運(yùn)作非常復(fù)雜,無法進(jìn)行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對于實際應(yīng)用沒有太大意義,只要模型性能好就行14、人工智能中的強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制。假設(shè)一個機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機(jī)器人強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以在沒有任何先驗知識的情況下,通過隨機(jī)探索快速學(xué)會有效的行走和避障策略B.強(qiáng)化學(xué)習(xí)中的獎勵設(shè)置對機(jī)器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎勵就行C.結(jié)合機(jī)器人的物理模型和環(huán)境模型,可以為強(qiáng)化學(xué)習(xí)提供更好的先驗知識,加速學(xué)習(xí)過程D.機(jī)器人的強(qiáng)化學(xué)習(xí)只適用于簡單的環(huán)境,對于復(fù)雜多變的真實環(huán)境無法應(yīng)用15、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個多層神經(jīng)網(wǎng)絡(luò)來預(yù)測股票價格的走勢。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預(yù)測不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜16、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個能夠?qū)崟r優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進(jìn)行實時調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行17、在人工智能的語音識別任務(wù)中,為了提高在嘈雜環(huán)境下的識別準(zhǔn)確率,以下哪種技術(shù)或方法可能會被重點(diǎn)研究和應(yīng)用?()A.聲學(xué)模型的改進(jìn)B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是18、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識,在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能19、在人工智能的發(fā)展過程中,倫理和社會問題日益受到關(guān)注。以下關(guān)于人工智能倫理問題的描述,不正確的是()A.人工智能可能導(dǎo)致就業(yè)結(jié)構(gòu)的變化,一些工作可能被自動化取代,從而引發(fā)社會就業(yè)問題B.人工智能在決策過程中可能存在偏見和不公平,例如在信用評估、招聘等領(lǐng)域C.隨著人工智能技術(shù)的發(fā)展,個人隱私保護(hù)面臨更大的挑戰(zhàn),因為大量的數(shù)據(jù)被收集和分析D.人工智能倫理問題不重要,技術(shù)的發(fā)展應(yīng)該優(yōu)先于倫理和社會問題的考慮20、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是21、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機(jī)選擇一組超參數(shù)進(jìn)行試驗B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)22、在一個利用人工智能進(jìn)行自動化文本分類的項目中,例如將新聞文章分類為不同的主題,為了提高分類的準(zhǔn)確性,以下哪種措施可能是有效的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.選擇更復(fù)雜的分類算法C.對文本進(jìn)行更精細(xì)的預(yù)處理D.以上都是23、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個用于圖像識別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強(qiáng)可以通過旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進(jìn)行模型訓(xùn)練24、在人工智能的圖像識別任務(wù)中,對抗樣本的存在對模型的安全性構(gòu)成威脅。假設(shè)一個圖像識別模型容易受到對抗樣本的攻擊,導(dǎo)致錯誤的分類結(jié)果。以下哪種方法在提高模型對對抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對抗訓(xùn)練D.以上方法綜合運(yùn)用25、假設(shè)在一個智能交通系統(tǒng)中,需要利用人工智能算法來優(yōu)化交通信號燈的控制,以減少交通擁堵和提高道路通行效率??紤]到實時交通流量的變化和復(fù)雜的道路網(wǎng)絡(luò),以下哪種技術(shù)可能是核心?()A.深度學(xué)習(xí)預(yù)測交通流量B.傳統(tǒng)的數(shù)學(xué)優(yōu)化算法C.基于案例的推理D.蒙特卡羅模擬二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋人工智能在智能市場競爭對手分析中的方法。2、(本題5分)解釋早停法在模型訓(xùn)練中的應(yīng)用。3、(本題5分)解釋人工智能在智能營銷活動策劃中的策略。4、(本題5分)談?wù)勅斯ぶ悄茉谔煳挠^測中的作用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)考察一個基于人工智能的智能音樂旋律創(chuàng)作輔助系統(tǒng),討論其如何輔助創(chuàng)作音樂旋律。2、(本題5分)研究一個基于人工智能的民間戲曲觀眾喜好分析系統(tǒng),評估其對戲曲發(fā)展的指導(dǎo)作用。3、(本題5分)以某智能翻譯軟件為例,探討人工智能在語言轉(zhuǎn)換中的準(zhǔn)確性和流暢性。4、(本題5分)研究一個使用人工智能的智能戲曲人才培養(yǎng)質(zhì)量監(jiān)測系統(tǒng),分析其如何監(jiān)測戲曲人才培養(yǎng)的質(zhì)量。5、(本題5分)研究一個利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論